
PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PM7325

ATLAS-3200

2488 MBIT/S SATURN USER NETWORK
INTERFACE ATM LAYER SOLUTION

PROGRAMMER'S GUIDE

CONFIDENTIAL
PRELIMINARY

ISSUE 1: DEC 2000

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PUBLIC REVISION HISTORY

Issue
No.

Issue
Date

Details of Change

1 Dec 2000 Document created.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE i

CONTENTS

1 REFERENCES... 1

2 GLOSSARY ... 2

3 INTRODUCTION.. 4

3.1 SCOPE.. 4

3.2 TARGET AUDIENCE... 4

3.3 NUMBERING CONVENTIONS ... 5

3.4 PSEUDO-CODE CONVENTIONS .. 5

4 ATLAS-3200 OVERVIEW .. 6

4.1 SYSTEM APPLICATION EXAMPLE ... 7

4.2 OPERATION MODES ... 8

4.3 DATA STRUCTURES.. 10

5 MICROPROCESSOR INTERFACE ... 15

5.1 MICROPROCESSOR INTERFACE BUS 15

5.2 REGISTER MEMORY MAP .. 15

6 PROGRAMMING HIGH LEVEL OPERATIONS..................................... 17

6.1 ATLAS-3200 RESETTING .. 18

6.1.1 ALGORITHM FOR HARDWARE RESETTING 19

6.1.2 ALGORITHM FOR SOFTWARE RESETTING................. 20

6.1.3 EXAMPLE ROUTINES ... 20

6.2 ATLAS-3200 INITIALIZING ... 22

6.2.1 ALGORITHM .. 23

6.2.2 CLOCK SETTINGS .. 25

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE ii

6.2.3 OPERATION MODE SETTINGS...................................... 25

6.2.4 PHYSICAL INTERFACE SETTINGS................................ 26

6.2.5 BACKWARDS CELL INTERFACE SETTINGS 28

6.2.6 CELL PROCESSOR SETTINGS...................................... 28

6.2.7 CELL COUNTING SETTINGS.. 30

6.2.8 POLICING SETTINGS ... 31

6.2.9 OAM SETTINGS .. 32

6.2.10 SEARCH KEY SETTINGS.. 32

6.2.11 INTERRUPT SETTINGS .. 32

6.2.12 VC TABLE SETTINGS.. 33

6.3 PHYSICAL CONNECTION ADDING... 34

6.3.1 ALGORITHM .. 34

6.3.2 PHYSICAL ID MAPPING SETTINGS............................... 35

6.3.3 PER-PHY POLICING SETTINGS..................................... 35

6.3.4 SCALEABLE DATA QUEUE SETTINGS.......................... 37

6.3.5 POLLING AND SERVICING CALENDAR SETTINGS...... 39

6.4 PHYSICAL CONNECTION REMOVAL 44

6.4.1 ALGORITHM .. 44

6.5 VIRTUAL CONNECTION ADDING.. 45

6.5.1 ADDING AN INDEPENDENT VCC................................... 45

6.5.2 ADDING AN INDEPENDENT VPC................................... 45

6.5.3 ADDING A VCC WITHIN A VPC....................................... 46

6.5.4 ALGORITHM .. 49

6.5.5 VC TABLE CONFIGURATION SETTINGS....................... 50

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE iii

6.5.6 VC TABLE ADDRESS SETTINGS 52

6.5.7 VC TABLE POLICING SETTINGS 53

6.5.8 VC TABLE OAM SETTINGS .. 55

6.5.9 PERFORMANCE MANAGEMENT SETTINGS 56

6.5.10 EXAMPLE ROUTINES ... 56

6.6 VIRTUAL CONNECTION REMOVAL .. 61

6.6.1 ALGORITHM .. 61

6.6.2 EXAMPLE ROUTINES ... 61

6.7 VIRTUAL CONNECTION SEARCH TREE MODIFYING............. 63

6.7.1 SEARCH KEY SETTINGS.. 63

6.7.2 SEARCH TREE STRUCTURE ... 65

6.7.3 ALGORITHM FOR FINDING A RECORD......................... 68

6.7.4 ALGORITHM FOR INSERTING A RECORD.................... 71

6.7.5 ALGORITHM FOR REMOVING A RECORD.................... 75

6.7.6 EXAMPLE ROUTINES ... 76

6.8 MICROPROCESSOR CELL INTERFACE COMMUNICATING... 97

6.8.1 READING CELLS... 97

6.8.2 WRITING CELLS ... 98

6.9 FIFO MANAGING.. 99

6.9.1 CHANGE OF STATE FIFO ... 99

6.9.2 COUNT ROLLOVER FIFO ... 102

6.10 INTERRUPT HANDLING .. 107

6.11 OAM CELL PROCESSING ..110

6.11.1 GENERAL OAM SETTINGS ...110

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE iv

6.11.2 FAULT MANAGEMENT CELL PROCESSING112

6.11.3 PM CELL PROCESSING ..116

6.11.4 APS CELL PROCESSING.. 123

6.11.5 ACTIVATION/DEACTIVATION CELL PROCESSING..... 124

6.11.6 SYSTEM MANAGEMENT CELL PROCESSING............ 124

6.11.7 RESOURCE MANAGEMENT CELL PROCESSING 124

6.12 CELL ROUTING.. 126

6.12.1 FLOW CHART GUIDE.. 127

6.12.2 IMCIF CELL ROUTING .. 130

6.12.3 ICIF CELL ROUTING ... 131

6.12.4 IBCIF CELL ROUTING ... 145

7 PROGRAMMING COMPONENT INTERFACES.................................. 148

7.1 DIRECT REGISTER INTERFACING... 149

7.1.1 READING ... 149

7.1.2 WRITING.. 149

7.1.3 EXAMPLE ROUTINES ... 149

7.2 EXTERNAL SRAM INTERFACING ... 153

7.2.1 READING EXTERNAL SRAM ENTRIES........................ 155

7.2.2 WRITING EXTERNAL SRAM ENTRIES 155

7.2.3 DIAGNOSTIC TESTING... 156

7.2.4 EXAMPLE ROUTINES ... 156

7.3 VC TABLE ENTRY INTERFACING ... 161

7.3.1 READING VC TABLE RECORDS 162

7.3.2 WRITING VC TABLE RECORDS................................... 163

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE v

7.3.3 EXAMPLE ROUTINES ... 164

7.4 SDQ ENTRY INTERFACING .. 167

7.4.1 READING SDQ ENTRIES.. 168

7.4.2 WRITING SDQ ENTRIES... 169

7.5 PM TABLE RECORD INTERFACING 171

7.5.1 READING PM TABLE RECORDS.................................. 173

7.5.2 WRITING PM TABLE RECORDS................................... 173

7.6 PHY ID MAPPING TABLE INTERFACING................................ 175

7.6.1 READING PHY ID MAPPING TABLE ENTRIES 176

7.6.2 WRITING PHY ID MAPPING TABLE ENTRIES............. 176

7.7 PHY POLCING RAM INTERFACING.. 177

7.7.1 READING PHY POLICING CONFIGURATION TABLES 178

7.7.2 WRITING PHY POLICING CONFIGURATION TABLES 179

7.7.3 INITIALIZING PER-PHY POLICING............................... 180

7.8 PHY COUNT INTERFACING .. 181

7.8.1 READING PER-PHY CELL COUNTS............................. 182

7.8.2 WRITING PER-PHY CELL COUNTS 183

7.9 CALENDAR ENTRY INTERFACING... 184

7.9.1 READING CALENDAR ENTRY...................................... 185

7.9.2 WRITING CALENDAR ENTRY 185

7.10 MCIF INTERFACING .. 187

7.10.1 READING CELLS... 190

7.10.2 WRITING CELLS ... 190

7.11 CHANGE OF STATE FIFO INTERFACING............................... 192

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE vi

7.11.1 READING COS ENTRIES.. 193

7.12 COUNT ROLLOVER FIFO INTERFACING............................... 194

7.12.1 READING CRO ENTRIES.. 195

8 PSEUDO-CODE REFERENCE ... 196

9 APPENDIX A: OAM CELL DESCRIPTIONS.. 198

9.1 GENERAL OAM CELL FORMAT .. 200

9.2 FAULT MANAGEMENT (FM) CELLS.. 203

9.2.1 AIS AND RDI CELLS.. 203

9.2.2 CC CELLS .. 205

9.2.3 LOOPBACK CELLS ... 206

9.3 PERFORMANCE MANAGEMENT (PM) CELLS....................... 207

9.4 ACTIVATE / DEACTIVATE (A/D) CELLS 209

9.5 SYSTEM MANAGEMENT (SM) CELLS.................................... 210

9.6 AUTOMATED PROTECTION SWITCHING (APS) CELLS211

10 APPENDIX B: VC BINARY SEARCH TREE EXAMPLE 212

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE vii

LIST OF FIGURES

FIGURE 1 - ATLAS-3200 SYSTEM APPLICATION... 7

FIGURE 2 - OPERATING MODE COMPONENTS AND DATA PATHS............. 9

FIGURE 3 - VC RELATED DATA STRUCTURES ..11

FIGURE 4 - FIFO DATA STRUCTURES ..11

FIGURE 5 - MISCELLANEOUS DATA STRUCTURES................................... 12

FIGURE 6 - EXTERNAL SRAM PARTITIONING .. 13

FIGURE 7 - REGISTER MAP.. 16

FIGURE 8 - RESET FLOW CHART .. 18

FIGURE 9 - INITIALIZATION FLOW CHART.. 22

FIGURE 10- VCC WITHIN VPC CONFIGURATION REQUIREMENTS 48

FIGURE 11 - VCC WITHIN VPC SEARCH TREE EXAMPLE........................... 49

FIGURE 12- SEARCH KEY CONSTRUCTION.. 65

FIGURE 13- SEARCH TREE STRUCTURE .. 67

FIGURE 14- SEARCH TREE FIND, STEP 2.. 68

FIGURE 15- SEARCH TREE FIND, STEP 3.. 68

FIGURE 16- SEARCH TREE FIND, STEP 4.. 69

FIGURE 17- SEARCH TREE FIND, STEP 5.. 69

FIGURE 18- SEARCH TREE FIND, STEP 6A ... 70

FIGURE 19- SEARCH TREE FIND, STEP 6B ... 70

FIGURE 20- SEARCH TREE FIND, STEP 7.. 71

FIGURE 21- SEARCH TREE INSERTION INTO AN EMPTY TREE................ 72

FIGURE 22- SEARCH TREE INSERTION INTO A SINGLE RECORD TREE . 73

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE viii

FIGURE 23- SEARCH TREE INSERTION AT THE ROOT OF A TREE 73

FIGURE 24- SEARCH TREE INSERTION AT MIDDLE OF A TREE................ 74

FIGURE 25- SEARCH TREE INSERTION AT LEAF.. 75

FIGURE 26- INTERRUPT HIERARCHY, INTERRUPT STATUS #1 REG. 108

FIGURE 27- INTERRUPT HIERARCHY, INTERRUPT STATUS #2 REG. 109

FIGURE 28- CELL FLOW, LEGEND.. 127

FIGURE 29- CELL AT FLOW END POINT SYMBOL 130

FIGURE 30- PRELIMINARY CELL FLOW FROM ICIF 131

FIGURE 31- USER CELL FLOW ... 132

FIGURE 32- PRELIMINARY OAM CELL FLOW .. 133

FIGURE 33- AIS/RDI/CC CELL FLOW... 134

FIGURE 34- LOOPBACK CELL FLOW, (LB_ROUTE = ‘00’) 135

FIGURE 35- LOOPBACK CELL FLOW (LB_ROUTE=‘01’ OR ‘10’,PARENT) 136

FIGURE 36- LOOPBACK CELL FLOW (LB_ROUTE=‘01’ OR ‘10’, RETURN)137

FIGURE 37- LOOPBACK CELL FLOW, (LB_ROUTE = ‘11’) 138

FIGURE 38- PM CELL FLOW .. 139

FIGURE 39- ACTIVATE/DEACTIVATE CELL FLOW...................................... 140

FIGURE 40- APS CELL FLOW .. 141

FIGURE 41- SYSTEM MANAGEMENT CELL FLOW 142

FIGURE 42- OAM CELL FLOW ... 143

FIGURE 43- RM CELL FLOW .. 144

FIGURE 44- PRELIMINARY CELL FLOW FROM THE IBCIF........................ 145

FIGURE 45- USER CELL FLOW FROM THE IBCIF...................................... 146

FIGURE 46- OAM AND RM CELL FLOW FROM THE IBCIF......................... 147

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE ix

FIGURE 47- ATM OAM HIERARCHICAL LEVELS .. 199

FIGURE 48- OAM CELL STRUCTURE.. 200

FIGURE 49- FM CELL FUNCTION SPECIFIC FIELDS 203

FIGURE 50- AIS AND RDI FLOW .. 204

FIGURE 51- CC FLOW .. 206

FIGURE 52- LOOPBACK FLOW EXAMPLES ... 207

FIGURE 53- PM CELL FUNCTION SPECIFIC FIELDS 208

FIGURE 54- EXAMPLE OF PM CELL FLOW .. 209

FIGURE 55- A/D CELL FUNCTION SPECIFIC FIELDS................................. 210

FIGURE 56- SYSTEM MANAGEMENT CELL FUNCTION SPECIFIC FIELDS211

FIGURE 57- APS CELL FUNCTION SPECIFIC FIELDS211

FIGURE 58- DETAILED BINARY SEARCH TREE EXAMPLE 214

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE x

LIST OF TABLES

TABLE 1 - TEST PIN CONNECTIONS ... 19

TABLE 2 - TYPICAL MEMORY ACCESS TIMES IN STANDBY STATE 23

TABLE 3 - REGISTER BITS FOR PHYSICAL INTERFACE RESETTING.... 24

TABLE 4 - REGISTER BITS FOR SDQ AND BCIF RESETTING 24

TABLE 5 - REGISTER BITS FOR HALF SEC. CLOCK CONFIGURATION . 25

TABLE 6 - REGISTER BITS FOR OPERATION MODE SETTINGS 26

TABLE 7 - REGISTERS FOR PHYSICAL INTERFACE MODE CONFIG...... 27

TABLE 8 - REGISTERS FOR PHYSICAL CONNECTION PROCESSING ... 28

TABLE 9 - REGISTERS FOR BCIF CONFIGURATION................................ 28

TABLE 10 - CELL PROCESSOR CONFIG. REGISTER (0X100).................... 28

TABLE 11 - REGISTERS FOR CELL COUNTING CONFIGURATION........... 31

TABLE 12 - REGISTERS FOR POLICING CONFIGURATION....................... 31

TABLE 13 - REGISTERS FOR SEARCH KEY CONFIGURATION................. 32

TABLE 14 - REGISTERS FOR PER-PHY POLICING CONFIGURATION...... 36

TABLE 15 - SUGGESTED SDQ FIFO SIZES... 37

TABLE 16 - SDQ REGISTERS ... 38

TABLE 17 - POLLING AND SERVICING CALENDAR USE 40

TABLE 18 - CALENDAR EXAMPLE: ONE STS-12 .. 41

TABLE 19 - CALENDAR EXAMPLE: ONE STS-12, ONE STS-3.................... 41

TABLE 20 - CALENDAR EXAMPLE: ONE STS-12, TWO STS-3’S................ 41

TABLE 21 - REGISTERS FOR CALENDAR PROGRAMMING 42

TABLE 22 - VC TABLE RECORD, CONFIGURATION FIELD 50

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE xi

TABLE 23 - VC TABLE RECORD FIELDS FOR ADDRESSING SETTINGS.. 52

TABLE 24 - VC RECORD FIELDS FOR POLICING SETTINGS 53

TABLE 25 - GCRA AND GFR POLICING CONFIGURATIONS....................... 55

TABLE 26 - VC TABLE RECORD FIELDS FOR OAM SETTINGS 56

TABLE 27 - SEARCH ENGINE CONFIG. REGISTER (0X10B) FIELDS......... 64

TABLE 28 - SEARCH TABLE FIELD STRUCTURE.. 66

TABLE 29 - SEARCH TABLE FIELD DESCRIPTIONS................................... 66

TABLE 30 - REGISTERS FOR MCIF INDIRECT ACCESSING 97

TABLE 31 - REGISTER BITS FOR COS FIFO INTERRUPTS 100

TABLE 32 - REGISTER BITS FOR COS FIFO CONFIGURATION 100

TABLE 33 - REGISTERS FOR COS FIFO INTERFACING........................... 102

TABLE 34 - REGISTER BITS FOR CRO FIFO CONFIGURATION 103

TABLE 35 - REGISTER BITS FOR CRO FIFO INTERRUPTS..................... 106

TABLE 36 - REGISTERS FOR CRO FIFO INTERFACING 106

TABLE 37 - PER-VC GENERAL OAM SETTINGS ..110

TABLE 38 - GLOBAL GENERAL OAM SETTINGS111

TABLE 39 - PER-VC, FAULT MANAGEMENT SETTINGS............................113

TABLE 40 - GLOBAL FAULT MANAGEMENT SETTINGS114

TABLE 41 - REGISTERS FOR PM TABLE INDIRECT ACCESSING117

TABLE 42 - PM TABLE, CONFIG. AND STATUS FIELD................................117

TABLE 43 - GLOBAL PERFORMANCE MANAGEMENT SETTINGS 120

TABLE 44 - GLOBAL APS SETTINGS.. 123

TABLE 45 - GLOBAL ACTIVATION/DEACTIVATION SETTINGS................. 124

TABLE 46 - GLOBAL SYSTEM MANAGEMENT SETTINGS 124

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE xii

TABLE 47 - GLOBAL RESOURCE MANAGEMENT SETTINGS.................. 125

TABLE 48 - EXAMPLE CELL FLOW TO OCIF LOGIC CHART.................... 128

TABLE 49 - EXAMPLE CELL FLOW TO OMCIF LOGIC CHART................. 129

TABLE 50 - EXAMPLE CELL FLOW TO OBCIF LOGIC CHART 129

TABLE 51 - REGISTERS FOR SRAM INDIRECT ACCESSING 153

TABLE 52 - SRAM ACCESS CONTROL REGISTER (0X10C) 154

TABLE 53 - REGISTER BITS FOR SRAM CONFIG. AND INTERRUPTS.... 154

TABLE 54 - REGISTERS FOR VC TABLE ENTRY INTERFACING 161

TABLE 55 - VC TABLE ACCESS CONTROL REGISTER (0X111) 161

TABLE 56 - REGISTERS FOR SDQ ENTRY INDIRECT PROGRAMMING . 167

TABLE 57 - SDQ INDIRECT ADDRESS REGS (0X244,0X2A4,0X2C4)....... 167

TABLE 58 - REGISTERS FOR PM TABLE INDIRECT ACCESSING 171

TABLE 59 - PM WORD SELECT AND ACCESS CONTROL REG (0X170) . 172

TABLE 60 - REGISTERS FOR PHY MAP INDIRECT ACCESSING............. 175

TABLE 61 - PHY INDIRECT ADDRESS REGISTER (0X209, 0X289) 175

TABLE 62 - REGISTERS FOR PHY POLICING RAM INDIRECT ACCESS. 177

TABLE 63 - PHY POLICING RAM ACCESS CONTROL REG (0X144) 177

TABLE 64 - REGISTERS FOR PHY POLICING RAM INDIRECT ACCESS. 181

TABLE 65 - PER-PHY COUNTER CONTROL REGISTER (0X1A1) 182

TABLE 66 - REGISTERS FOR CALENDAR ENTRY ACCESS..................... 184

TABLE 67 - CALENDAR ADDR. AND DATA REG.(0X20B, 0X265, 0X28B) . 184

TABLE 68 - REGISTERS FOR MCIF INTERFACING................................... 187

TABLE 69 - MCIF CONTROL AND STATUS REG(0X020) INSERT BITS 187

TABLE 70 - MCIF CONTROL AND STATUS REG(0X020) EXTRACT BITS. 189

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE xiii

TABLE 71 - REGISTERS FOR COS FIFO INTERFACING........................... 192

TABLE 72 - VC TABLE COS FIFO STATUS REGISTER (0X190) 192

TABLE 73 - REGISTERS FOR CRO FIFO INTERFACING 194

TABLE 74 - VC TABLE CRO FIFO STATUS REGISTER (0X198)................ 194

TABLE 75 - F4 OAM CELL IDENTIFICATION .. 201

TABLE 76 - F5 OAM CELL IDENTIFICATION .. 201

TABLE 77 - OAM CELL TYPES AND FUNCTIONS...................................... 202

TABLE 78 - EXAMPLE VC CHARACTERISTICS ... 212

TABLE 79 - EXAMPLE SEARCH ENGINE CONFIG. REG. (0X10B) 212

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 1

1 REFERENCES

1. PMC-1990553, PMC-Sierra Inc., "OC-48 Saturn User Network Interface ATM
Layer Solution Standard Product Data Sheet", Oct 2000, Issue 3

2. ITU-T Recommendation I.610 (02/1999), B-ISDN operation and maintenance
principles and functions

3. ITU-T Recommendation I.630 (02/1999), ATM protection switching

4. ATM Forum TM4.1, ATM Forum Traffic Management Specification Version
4.1, 1999.

5. ITU-T Recommendation I.356 (03/00), B-ISDN ATM layer cell transfer
performance

6. ITU-T Recommendation I.371 - "Traffic Control and Congestion Control in B-
ISDN", May, 1996

7. ATM Forum AF-TM-0121.000 - Traffic Management Specification Version 4.1,
March 1999

8. ITU-T Recommendation I.610 - "B-ISDN Operation and Maintenance
Principles and Functions", February 1999.

9. Bell Communications Research - Generic Requirements for Operations of
Broadband Switching Systems, GR-1248-CORE, Issue 3, August 1996.

10. ATM Forum AF-PHY-0136.000 - UTOPIA 3 Physical Layer Interface,
November 1999.

11. PMC-1980495, "POS-PHY Level 3: SATURN Compatible Interface for Packet
Over SONET Physical Layer and Link Layer Devices", Issue 4, June 7, 2000.

12. ATM Forum AF-PHY-0039.000 - UTOPIA, An ATM-PHY Interface
Specification, Level 2, Version 1.0, June 1995.

13. PMC-880901 "Telecom System Block (TSB) User Manual", Issue 6, March
28, 1997.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 2

2 GLOSSARY

AIS Alarm Indication Signal. An OAM cell that indicates to
downstream entities that there is a fault in the VC.

CC Continuity Check. An OAM cell sent through the network so
that downstream entities may differentiate between a failure
and periods of low user cell traffic.

FM Fault Management. The mechanism used by the network to
inform management entities and other network equipment of
faults within the network. Consists of AIS, RDI, CC, and LB
cell flows.

GCRA Generic Cell Rate Algorithm. The algorithm used to police
the cell transmission rate. Also known as the Leaky Bucket
Algorithm.

GFR Guaranteed Frame Rate. The algorithm used to police the
packet transmission rate.

IBCIF Input Backwards Cell Interface. A component of the ATLAS-
3200 that receives cells from another ATLAS-3200 that is
transmitting in the opposite direction.

ICIF Input Cell Interface. A component of the ATLAS-3200 that
receives cells.

IMCIF Input Microprocessor Cell Interface. A component of the
ATLAS-3200 that receives cells or packets from the
microprocessor and inserts them into a connection.

OAM Operations and Maintenance. The maintenance of VCs
within the network.

OBCIF Output Backwards Cell Interface. A component of the
ATLAS-3200 that outputs cells to another ATLAS-3200 that
is transmitting in the opposite direction.

OCIF Output Cell Interface. A component of the ATLAS-3200 that
outputs cells.

OMCIF Output Microprocessor Cell Interface. A component of the
ATLAS-3200 that receives cells or packets from a
connection and sends them to the microprocessor.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 3

PM Performance Management. The mechanism used by the
network to monitor the performance parameters of a
particular VC.

RDI Remote Defect Indication. An OAM cell sent to an upstream
entity at the OAM flow endpoint to indicate that there is a
fault in the VC.

SDQ Scaleable Data Queue. A memory bank in the ATLAS-3200
that is configurable into variable sized FIFOs for buffering
the input and output interfaces.

VC Virtual Connection. This refers to either a Virtual Path
Connection (VPC) or a Virtual Channel Connection (VCC).

VCC Virtual Channel Connection. A virtual connection between
two network elements. A virtual channel connection is
normally a constituent member of a virtual path connection,
where the VPC consists of one or more VCCs. This is
sometimes known as an F5 connection.

VPC Virtual Path Connection. A virtual connection between two
network elements. A virtual path connection may span one
or more physical links. This is sometimes known as an F4
connection.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 4

3 INTRODUCTION

This document is a guide to programming the software for a microprocessor that
interfaces to an ATLAS-3200 chip. It is intended to ease the integration of the
ATLAS-3200 into system designs and to enable optimum performance to be
achieved. Suggested programming algorithms, configuration settings and
discussion of the chip’s operation are presented.

The document’s major sections are an overview of the ATLAS-3200, a
description of the microprocessor interface, a high level programming section,
and a component interface programming section. The Programming High Level
Operations section discusses configuration settings and algorithms related to
programming the high level functionality of the ATLAS-3200. The Programming
Component Interfaces section provides the algorithms for reading and writing
each of the ATLAS-3200 interfaces.

3.1 Scope

The ATLAS-3200 Programmer’s Guide supplements the ATLAS-3200 Data
Sheet [1] with additional information for software programming.

Typical system applications will use more than one ATLAS-3200, however, due to
the variety of possible configurations this document only discusses software
programming for a single chip. Programming the routines to coordinate multiple
ATLAS-3200s must be done on an application specific basis.

Although every effort has been taken to ensure the consistency between this
document and the ATLAS-3200 Data Sheet [1], some discrepancies may occur.
In case of inconsistencies between this document and the ATLAS-3200 Data
Sheet [1], the information in the Data Sheet [1] should be considered accurate
and takes precedence over information provided in this document.

Please contact a PMC-Sierra Applications Engineer for information not covered
in this document.

3.2 Target Audience

This document is prepared for software and system designers who are using the
ATLAS-3200 chip. Some prior knowledge of the ATM protocol, as well as some
knowledge of the C programming language and computer operation is necessary
to fully understand this document.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 5

3.3 Numbering Conventions

The following numbering conventions are used throughout this document:

• Decimal 129, 6, 12

• Binary 011, 1011 (when distinguished from decimal by the context)

or 0b011, 0b1011

• Hexadecimal 0x1FE2

3.4 Pseudo-Code Conventions

The pseudo-code in this document is shown in a C-like syntax. The pseudo-code
segments are provided as a reference in order to understand a particular
procedure or concept. The pseudo-code, however, is not compile-ready and is
not provided for all sections. The pseudo-code segments are contained in the
Example Routines sections at the end of the major sections to which they relate.

Function calls that are made to other pseudo-code routines that are defined in
this document are highlighted in bold. Function calls that are not highlighted in
bold indicate that the routine is not provided. The routines that are not provided
are either self explanatory or application specific.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 6

4 ATLAS-3200 OVERVIEW

The ATLAS-3200 is an integrated circuit that implements ATM Layer functions
that include header translation, cell rate policing, per-connection cell counting
and I.610 compliant OAM requirements for up to 64K virtual connections. It is a
uni-directional part that is intended to be situated between the physical layer
devices and the traffic manager.

The sections below discuss a typical system application, the operating modes,
and the data structures. These sections are intended to serve as a reference for
general understanding of the ATLAS-3200, and are referred to frequently in the
rest of the document.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 7

4.1 System Application Example

A typical system application is shown in Figure 1. The ATLAS-3200s are typically
used in pairs. One chip of the pair receives cells/packets from PHY Layer
devices and sends them towards the traffic manager/switch core. This chip is
said to be in Ingress mode. The other chip of the pair receives cells/packets
from the traffic manager/switch core and sends them to the PHY Layer devices.
This chip is said to be in Egress mode. The Backwards Cell Interfaces allow the
ATLAS-3200s to insert cells into the opposite direction cell flow. Each ATLAS-
3200 has an external SRAM bank for holding part of the connection information
(the other part being held in the internal embedded DRAM) and a
Microprocessor Interface to provide the connection to a microprocessor. This
document is a guide to programming the software for this microprocessor.

Figure 1 - ATLAS-3200 System Application

ATLAS-3200
(Ingress Mode)

Microprocessor

ATLAS-3200
(Egress Mode)

SRAM

Physical
Devices Switch Fabric

Traffic
Manager

Traffic
Manager

SRAM

SRAM Interface

UTOPIA or POS-PHY (Level 3)

Input Backwards Cell Interface
16-bit SCI PHY

Microprocessor Interface

UTOPIA or POS-PHY (Level 3)

Output Backwards Cell Interface
16-bit SCI PHY

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 8

4.2 Operation Modes

The ATLAS-3200 can be configured in four Operating Modes based on the
signaling type and the direction of cell transmission with respect to the switch
core. The signaling type can be either UTOPIA or POS-PHY, and the
transmission direction can be either Ingress or Egress. UTOPIA Level 3 is used
for transferring fixed-length ATM cells; and POS-PHY Level 3 is used for
transferring variable-length packets. Applications that require the ATLAS-3200 to
transfer mixed cell and packet traffic should use POS-PHY signalling.

In each operating mode different components and data paths within the ATLAS-
3200 are used. A diagram summarizing each operating mode is provided in
Figure 2.

All the programming routines in this document for a single ATLAS-3200,
however, they apply equally to all modes of operation (Ingress or Egress and
UTOPIA or POS-PHY) unless noted otherwise.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 9

Figure 2 - Operating Mode Components and Data Paths

Ingress POS-PHY mode

ICIF
RxLink

PHY
Map

Cell
Processor

Input
SDQ

OCIF
RxPHY

Output
SDQ

RxPHY
Calendar

Bypass
SDQ

Ingress UTOPIA mode

ICIF
RxLink

PHY
Map

Cell
Processor

Input
SDQ

OCIF
RxPHY

Output
SDQ

RxPHY
Calendar *

Link
Layer

Device

PHY
Layer

Devices

RxLink
Calendar

Egress UTOPIA mode

OCIF
TxLink

PHY
Map

Cell
Processor

Input
SDQ

ICIF
TxPHY

Output
SDQ

TxLink
Calendar

Egress POS-PHY mode

OCIF
TxLink

PHY
Map

Cell
Processor

Input
SDQ

ICIF
TxPHY

Output
SDQ

TxLink
Calendar

Bypass
SDQ

Link
Layer

Device

PHY
Layer

Devices

Link
Layer

Device

PHY
Layer

Devices

Link
Layer

Device

PHY
Layer

Devices

* Optional calendar. Only used if
RxPHY slave is configured as a
single PHY.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 10

4.3 Data Structures

The ATLAS-3200’s operation relies on data structures located in internal and
external memory. One bank of external SRAM stores the VC Linkage Table and
Search Tables. All other data structures are stored in memory internal to the
ATLAS-3200.

The microprocessor can access all data structures indirectly through these
registers. The indirect access interface to each data structure is described in
Section 7 Programming Component Interfaces. The figures in this section show
all the data structures that are accessible by the microprocessor.

Figure 3 shows the memory locations and relationships between the data
structures directly related to the Virtual Connection Record Tables. The dashed
lines in Figure 3 indicate fields in the data structures that point to other locations
in memory. One example of each pointer type is shown. The VC Linkage Table
should be viewed conceptually as an extension of the VC Table, but resides in
external SRAM instead of the internal DRAM for performance reasons. Thus, the
information in location 0x123 (for example) of the linkage table is simply an
extension of the information in location 0x123 of the VC Table.

The FIFOs contained in the ATLAS-3200 are shown in Figure 4, and all the
remaining internal data structures are shown in Figure 5.

A description of the external memory sizing is shown in Figure 6.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 11

Figure 3 - VC Related Data Structures

VC Table Record

VC RAM
64K - 1

(Bank 3)

0 (Bank 0)

VC Linkage Table Record

EXTERNAL SRAM

Secondary
Search Entry

Primary
Search Entry

0

0

64K - 1

64K - 1

PM Table Record

PM RAM BANK 1

255

0

PM Table Record

PM RAM BANK 2

255

0

PM 1 Address

PM 2 Address1 (Bank 1)

2 (Bank 2)

3 (Bank 3)

4 (Bank 0)

Leaf Branch

Primary Search Pointer

Search
Partition

Linkage
Partition

VPC Pointer

Figure 4 - FIFO Data Structures

ATM Cell

IMCIF FIFO

15

0

ATM Cell

OMCIF FIFO

0CRO Entry

COUNT ROLLOVER FIFO

255

0

COS Entry

CHANGE OF STATE FIFO

255

0

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 12

Figure 5 - Miscellaneous Data Structures

Per-PHY Policing Config,
Status, Counts

PHY POLICING RAM

47

0

Per-PHY Cell Counts

PHY COUNT RAM

47

0

Per-PHY FIFO Config47

0

Per-PHY FIFO Config47

0

INPUT SDQ CONFIG. RAM OUTPUT SDQ CONFIG. RAM

Per-PHY FIFO Config47

0

BYPASS SDQ CONFIG. RAM

PHY ID128

0

PHY ID128

0

PHY ID128

0

TxLINK CALENDAR RxLINK CALENDARRxLINK CALENDAR

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 13

The size of the external SRAM can be varied to suit application specific
requirements. The SRAM is always divided into a Linkage Partition and a
Search Partition, which can support a maximum of 64K Linkage entries and
128K Search entries. In Figure 3, the SRAM shown is 8 Mbits (64K entries x 2
partitions x 64 bits). The partitioning configuration for various SRAM sizes is
described below and shown in Figure 6.

• An 8 Mbit SRAM is the minimum size required to allow a full set of 64K virtual
connections (one VC for each VC Linkage Table Record), and provides 64K
Search entries.

• A 16 Mbit SRAM also allows 64K virtual connections but increases the
number of Search entries to the maximum of 128K. The additional size of the
Search Partition allows the full VCI-VPI-PHYID address to be resolved and
eases the maintenance of the search table by providing extra room for
modifications.

• Any SRAM smaller than 8 Mbits may be used with the number of allowed
virtual connections decreasing proportionally.

Figure 6 - External SRAM Partitioning

8 Mbits
(64K entries x 2 partitions x 64 bits)

0

64K - 1

64K - 1

Search Partition

16 Mbits
(128K entries x 2 partitions x 64 bits)

0

128K - 1

0

128K - 1

Search Partition

Unused

Linkage Partition

(64K virtual
connections)

4 Mbits
(32K entries x 2 partitions x 64 bits)

0

0

32K - 1 LInkage Partition
(32K virtual

connections)

Search Partition
32K - 1

0

64K - 1

Linkage Partition

(64K virtual
connections)

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 14

When accesses are made to the SRAM through indirect registers, the
microprocessor specifies which partition it wishes to access, and the address
within the partition beginning at an offset of 0. The use of these partitions relies
on the hardware connection between the MSB of the SRAM address bus and the
MSB of the ATLAS-3200 SRAM address bus (SADDR[17]).

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 15

5 MICROPROCESSOR INTERFACE

The ATLAS-3200 has a generic microprocessor programming interface that
provides access to a set of registers through the microprocessor interface bus.
All microprocessor control and data transfer operations are performed through
these registers. The sections below discuss the signals on the microprocessor
interface bus and the direct registers.

5.1 Microprocessor Interface Bus

Microprocessor accesses to the ATLAS-3200 involve the 11-bit address bus
(UP_ADDR[11:0]) that selects a register to be accessed and the 32-bit bi-
directional data bus (UP_DAT[31:0]) over which data is transferred.

The busy signal (UP_BUSYB) is asserted while a microprocessor initiated
access to external or internal RAM data is pending. The microprocessor can use
this signal for polling or interrupt driven waiting. BUSY bits corresponding to
each memory block are also accessible in the internal registers.

The DMA request signal (UP_DMAREQ) is asserted when the Output
Microprocessor Cell Interface (OMCIF) contains a cell to be read. This signal
can be polled by the microprocessor to check for arriving cells at the OMCIF.
The interrupt signal (UP_INTB) can also be configured to indicate cell arrivals if
an interrupt driven approach is used.

The interrupt request signal (UP_INTB) indicates when an unmasked interrupt
source is active. The Interrupt Status registers must be read in order to identify
the specific interrupt request source.

The chip select (UP_CSB), write (UP_WRB), read (UP_RDB) and address
strobe (UP_ALE) signals are used for standard asynchronous read and write
cycles as described in the Data Sheet [1].

The reset signal (UP_RSTB) performs a hard reset to the ATLAS-3200 when it is
set low.

5.2 Register Memory Map

A memory map of the direct registers that are available to the microprocessor are
listed in Figure 7. During typical operation only the Normal Mode Registers will
be accessed. See the Data Sheet[1] for a comprehensive list of the Normal
Mode Registers.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 16

Figure 7 - Register Map

0x000
Core Registers

Rx Link Interface

0x020
Microprocessor Cell Interface

0x030
Backwards Cell Interface

0x100

Cell Processor

Packet Bypass Scaleable Data Queue

0x200

Tx Phy Interface
0x220

Input Scaleable Data Queue
0x240

Rx Phy Interface
0x260

Tx Link Interface
0x280

Output Scaleable Data Queue
0x2A0

0x2C0

unused

Master Test
0x800

Reserved

0xA00

0xFFF

Normal Mode
Registers

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 17

6 PROGRAMMING HIGH LEVEL OPERATIONS

This section contains guides to programming the major functional operations that
will typically be performed on the ATLAS-3200. Programming algorithms,
register configurations, explanations ATLAS-3200 operations, and some example
pseudo-code are provided.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 18

6.1 ATLAS-3200 Resetting

This section describes the ATLAS-3200’s state transitions between the Hardware
Reset, Software Reset and Standby states. A summary of the reset state
transitions is shown in Figure 8. The algorithms to perform hardware and
software resets are discussed in the sections below.

Figure 8 - Reset Flow Chart

S0: Hardware Reset
Hardware

Reset

External UP_RSTB
signal goes high.

S1: Software Reset
Software

Reset

Poll DLLRUN bit

Wait 200 us

Clear chip software
RESET bit.

Is bit set ?

No

Yes

S2: Standby State

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 19

Hardware Reset State:

The hardware reset state is entered when the UP_RSTB input pin is forced low.
This state has the following characteristics:

• Internal registers (0x000 – 0xFFF) are reset to their default states.

• Digital outputs are tri-stated.

• All internal ATLAS-3200 components are in low-power, stand-by mode.

Software Reset State:

The Software Reset state is automatically entered after a hardware reset is
removed or it can be entered by setting the RESET bit in the Master Reset and
Configuration Register (0x000). This state has the following characteristics:

• Internal registers (0x000 – 0xFFF) are reset to their default states.

• Digital outputs are NOT tri-stated. The ATLAS-3200 is in Ingress Pos-PHY
that is the state in which all UL3/POS pins that can be either inputs or
outputs, are inputs. This avoids contention on startup.

• Generic Microprocessor Programming Interface and the DLL Clock are
operational. All other internal ATLAS-3200 components in low-power, stand-
by mode.

6.1.1 Algorithm for Hardware Resetting

The following steps need to be taken to proceed to the Software Reset state.
The procedure to perform these steps will rely on the specific hardware
implementation and may not be under microprocessor control.

1. Set up external signals. Ensure that the JTAG test pins are connected as
listed in Table 1

Table 1 - Test Pin Connections

Pin Name Value

TCK 0
TMS 0
TDI 0
TRSTB 1

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 20

2. Take the ATLAS-3200 out of hardware reset by forcing the UP_RSTB pin
high.

6.1.2 Algorithm for Software Resetting

The following steps need to be taken to proceed to the Standby state. These
steps are performed by the microprocessor through the Generic Microprocessor
Programming Interface.

1. If this state was entered from the Hardware Reset state then leave the
RESET bit in the Master Reset and Configuration Register (0x000) set to
logic 1, and wait for the DLLRUN bit in the Master Clock Monitor Register
(0x006) to be set to logic 1 for at least 200 us. This ensures that the
SYSCLK DLL has been locked for sufficient time to allow the embedded
DRAM to initialize.

2. Take the ATLAS-3200 out of software reset by writing a 0 to the RESET bit in
the Master Reset and Configuration Register (0x000). Note that each of the
components will still be held in reset by their individual RESET bits.

6.1.3 Example Routines

6.1.3.1 resetDevice

This function forces a software reset then brings the ATLAS-3200 into its standby
state.

Inputs: (none)

Outputs: (none)

Pseudocode:

#define BTMSK_MASTER_CFG_AND_RST_RESET 0x0001
#define BTMSK_MASTER_CLOCK_MONITOR_DLLRUN 0x0080
#define BTMSK_IBCIF_CONFIG_IBCIFRST 0x0001

VOID resetDevice()
{

/*set RESET bit in Master Configuration and Reset Register*/
regWriteMask(REG_MASTER_CFG_AND_RST,

BTMSK_MASTER_CFG_AND_RST_RESET,

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 21

BTMSK_MASTER_CFG_AND_RST_RESET)

/* wait until DLLRUN = 1 */
regPollBitHigh(REG_MASTER_CLOCK_MONITOR,

BTMSK_MASTER_CLOCK_MONITOR_ DLLRUN)

wait for 200us

/*clear RESET bit in Master Configuration and Reset
Register*/

regWriteMask(REG_MASTER_CFG_AND_RST,
BTMSK_MASTER_CFG_AND_RST_RESET, 0)

return
}

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 22

6.2 ATLAS-3200 Initializing

This section is a guide to programming the initialization routines for the ATLAS-
3200. Initialization will typically be performed once after a reset. A summary of
the initialization state transitions is shown in Figure 9.

Initializing the ATLAS-3200 involves setting the operational parameters for all the
internal components to prepare them for Normal Operation state. The
initialization should be performed while in Standby sate. Once initialization is
complete the ATLAS-3200 can be brought into Normal Operation state. The
sections below discuss the initialization algorithm and descriptions of all of the
component settings that need to be initialized.

Figure 9 - Initialization Flow Chart

S2: Standby State

Set all configuration settings in
direct registers

Clear STANDBY bit

S3: Normal Operation State

from Reset State,
(see section ATLAS-3200 Resetting)

Initialize extenal SRAM

Clear RESET bits of the SDQs
that will be used and the BCIFs

Clear RESET bits of the
Physical Interface components

that will be used

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 23

Standby State:

The Standby state is automatically entered after a software reset is removed or it
can be entered from the Normal Operation state by setting the STANDBY bit in
the Master Reset and Configuration Register (0x000).

The Standby state has the following characteristics:

• Cell Processor is disabled. The processing of cells currently in the pipeline is
completed, but no more cells are accepted. This prevents passing corrupted
cells while initializing the ATLAS-3200.

• All ATLAS-3200 components except the Cell Processor are enabled.

• All internal bus cycles are available for external SRAM and internal DRAM
access (i.e. access to the Search Tables, VC Linkage Table and VC Table is
given highest priority and no other processing will interrupt the SRAM and
DRAM busses). The typical access times are given in Table 2.

Table 2 - Typical Memory Access Times in Standby State

Memory Location Standby State Normal Operation State

External SRAM 5 SYSCLK cycles 22 SYSCLK cycles
Internal DRAM 25 SYSCLK cycles 220 SYSCLK cycles

6.2.1 Algorithm

The algorithm to initialize the ATLAS-3200 is as follows:

1. Ensure the ATLAS-3200 is in Standby state by checking that the STANDBY
bit in the Master Reset and Configuration Register (0x000) is set to logic 1.

2. IMPORTANT: Write logic 1 to both the SRAM_BUSY_EN bit and
DRAM_BUSY_EN bit in the Master Reset and Configuration Register
(0x000). These bits must be set to 1 to enable the BUSY bits that are used
to access all the indirect data structures. The default values of both the
SRAM_BUSY_EN bit and DRAM_BUSY_EN are logic 0, so they must be
changed after each reset.

3. Clear the external SRAM by writing zeroes to all memory locations.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 24

4. Configure the global settings for all the internal components. The following
sections provide the detailed setting descriptions for each component. Note
that only the direct registers are accessable now since the components still
have their individual reset bits set following the chip reset.

5. Clear the reset bits for the two Physical Interface components that will be
used in the desired operating mode. The different operating modes are
shown in Figure 2. See Table 3 for a list of the physical interface reset bits.

Table 3 - Register Bits for Physical Interface Resetting

Bit Name Register Operating Mode

RXLRST RxL Configuration (0x200) Ingress
RXPRST RxP Configuration (0x260) Ingress
TXLRST TxL Configuration (0x280) Egress
TXPRST TxP Configuration (0x220) Egress

6. Clear the reset bits for the SDQ components that will be used in the desired
operating mode and the Backwards Cell Interface. The different operating
modes are shown in Figure 2. See Table 4 for list of the reset bits. It is
important that the SDQs are brought out of reset after the physical interfaces
have been configured. This is because the Pre/Post Lengths in the physical
in configuration registers propagate to the SDQs when they are activated.

Table 4 - Register Bits for SDQ and BCIF Resetting

Bit Name Register Operating Mode

SDQRST Input SDQ Control (0x240) Pos-Phy, Utopia
SDQRST Output SDQ Configuration (0x2A0) Pos-Phy, Utopia
SDQRST Bypass SDQ Configuration (0x2C0) Pos-Phy
IBCIFRST Input Backwards Cell Interface

Configuration (0x030)
(all)

OBCIFRST Output Backwards Cell Interface
Configuration (0x038)

(all)

7. Bring the ATLAS-3200 from Standby state into Normal Operation state by
writing a logic 0 to the STANDBY bit in the Master Reset and Configuration
Register (0x000).

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 25

6.2.2 Clock Settings

During the Reset state any changes to the default Delay Locked Loop clock
configurations should have been made (see section 6.1 ATLAS-3200 Resetting).
The remaining clock to configure is the Half Second Clock which is used as a
trigger for OAM alarm monitoring. This is done by setting the
GEN_HALFSECCLK bit in the Cell Processing Configuration Register (0x100)
according to Table 5.

Table 5 - Register Bits for Half Sec. Clock Configuration

Bit Name Register Description

0 : External signal
HALFSECCLK is used.

GEN_HALFSECCLK Cell Processing
Configuration
Register (0x100) 1 : Clock is derived internally

from SYSCLK.
HALFSECCLK input is
unused.

To check that all the clocks are running use the following procedure:

1. Read the Master Clock Monitor Register (0x006). This will clear the clock
active bits.

2. Wait longer than the length of the longest clock period which is 500ms of the
HALFSECCLOCK

3. Read the Master Clock Monitor Register (0x006) and check that all of the
clock active bits have been set. This will confirm that the clocks are
functioning.

6.2.3 Operation Mode Settings

After a reset the ATLAS-3200 defaults to the Ingress, Pos-PHY mode which is
the state in which all POS/UL3 pins that can be either inputs or outputs, are
inputs. This avoids external bus contention on startup.

Select the desired operation mode according to Table 6.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 26

Table 6 - Register Bits for Operation Mode Settings

Bit Name Register Description

0 Ingress mode.
RxLink and RxPHY blocks
are used.

Egress_IngressB Master Configuration
and Reset (0x000)

1 Egress mode.
TxPHY and TxLink blocks
are used.

0 Utopia Level 3 signaling.POS_UL3B Master Configuration
and Reset (0x000) 1 POS-PHY 3 signaling.

6.2.4 Physical Interface Settings

The operation of the ATLAS-3200’s physical interface depends on which
operating mode it is in: Ingress/Egress and POS-PHY/Utopia. The registers that
need to be programmed for each operating mode are shown shaded in Table 7.
Unused registers do not need to be programmed.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 27

Table 7 - Registers for Physical Interface Mode Config.

Ingress EgressRegister Address

POS-PHY Utopia POS-PHY Utopia

Description

RxL Configuration 0x200 Reset bit and configuration settings

RxL Data Type Field 0x20C Identification words used to identify
incoming data as either ATM cells
or packets.

RxL Interrupt Enable 0x201 Interrupt enables for the RxL
Interrupt Register (0x202).

RxP Configuration 0x260 Reset bit and configuration settings.

RxP Data Type Field 0x266 Identification words inserted to
outgoing ATM cells or packets.

RxP Interrupt Enable 0x262 Interrupt enables for the RxP
Interrupt Register (0x261).

TxP Configuration 0x220 Reset bit and configuration settings

TxP Data Type Field 0x223 Identification words used to identify
incoming data as either ATM cells
or packets.

TxP Interrupt Enable 0x222 Interrupt enables for the TxP
Interrupt Register (0x221).

TxL Configuration 0x280 Reset bit and configuration settings

TxL Data Type Field 0x28C Identification words inserted to
outgoing ATM cells or packets.

TxL Interrupt Enable 0x281 Interrupt enables for the TxL
Interrupt Register (0x282).

The RxL, RxP, TxP, and TxL interfaces each have a reset bit in their
Configuration registers. Before programming any of the configuration settings for
a given interface, the interface’s reset bit must be set. Once all the registers
have been programmed the reset bit can be cleared.

In each Physical Interface mode the ATLAS-3200 supports 48 physical devices.
The ATLAS-3200 may be configured to pass some physical connections
transparently. This feature is typically used when cells from a certain PHY are to
be processed in another device, such as another ATLAS-3200. This allows
multiple Atlas-3200s to be cascaded, each handling cells from some of the
PHY’s. By default after a reset all physical connections will be processed. If it is
desired that some physical connections not be processed, set the registers listed
in Table 8 as required.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 28

Table 8 - Registers for Physical Connection Processing

Register Address Description

Per-PHY Processing
Enable 1

0x105 Process enable bits for physical
connections 0 to 31.

Per-PHY Processing
Enable 2

0x106 Process enable bits for physical
connections 31 to 47.

6.2.5 Backwards Cell Interface Settings

The configuration of the Backwards Cell Interface is contained in the registers
listed in Table 9. See the Data Sheet [1] for detailed descriptions of these
registers. When programming the registers, the reset bits in the corresponding
Configuration register must first be set before proceeding. Once the registers
have been programmed the reset bits can be cleared.

Table 9 - Registers for BCIF Configuration

Register Address Description

Input Backwards Cell
Interface Configuration

0x030 IBCIF reset bit and configuration
settings.

Output Backwards Cell
Interface Configuration

0x038 OBCIF reset bit and configuration
settings.

Backward Cell Interface
Pacing and Head of Line
Blocking

0x104 Cell interval and timeout settings. See
Data Sheet [1] for details.

6.2.6 Cell Processor Settings

The general operation of the cell processor is controlled by the Cell Processor
Configuration Register (0x100) that contains the configuration bits listed in Table
10. For detailed descriptions of these settings see the Data Sheet [1] and other
sections of this Programming Guide referenced in Table 10.

Table 10 - Cell Processor Config. Register (0x100)

Bit Name Description

31:29 Unused Always set to logic 0 when writing. Read
value is undefined.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 29

Bit Name Description

28 Copy_FwPM_Timesta
mp

(see 6.11.3 PM Cell Processing)

27 GEN_HALFSECCLK (see section 6.2.2)
26 F4SAISF5EAIS
25 F4SAISF5ERDI
24 F4EAISF5EAIS
23 F4EAISF5SRDI
22 ForceCC
21 AUTO_AIS

(see 6.11.2 Fault Management Cell
Processing)

20 COS_DRAM_ERR_EN (see Section 6.9.1 Change of State FIFO)
19 Reserved Always set to logic 0 when writing. Read

value is undefined.
18 COS_Fail_EN
17 COS_FAIL_ONLY
16 COS_EN

(see Section 6.9.1 Change of State FIFO)

15 Sat_Fast_PM_Counts
14 CRO_FIFO_EN

(see Section 6.9.2 Count Rollover FIFO.)

0 : Arriving cells increment Cell Count
fields in all VC Table Records

13 Alternate_Count

1 : Arriving cells increment Alternate Count
fields in all VC Table Records.

0 : VPC (F4) Resource Management cells
identified by VCI=6 and PTI is ignored.

12 VP_RM_PTI6

1 : VPC (F4) Resource Management cells
identified by VCI=6 and PTI=110.

11 Search_Verify_En (see 6.7 Virtual Connection Search Tree
Modifying)

9 SRAM_Even_Parity (see Section 7.2 External SRAM)

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 30

Bit Name Description

8 Cell_Info_to_OCIF Enables insertion of Cell Information into
outgoing cells routed to the OCIF. This
information is for the convenience of an ASIC
or tester, to assist in identifying the cell and
the connection from which it came

7 Timeout_To_UP Controls routing of cells that timeout while
waiting to be inserted from the IBCIF. See
Section 0 for details.

6 Reserved Always set to logic 0 when writing. Read
value is undefined.

5 Cell_Info_To_UP Enables insertion of Cell Information into
cells routed to the MCIF. This information is
to assist in identifying the cell type and the
reason why it was routed to the MCIF.

4 XGFC
3 XUDF
2 XHEC
1 XPREPO
0 XVPIVCI

Controls insertion of translated fields into
outgoing cells.

6.2.7 Cell Counting Settings

The ATLAS-3200 supports per-VC and per-PHY cell counting. The cell counting
configuration registers are listed in Table 11. These registers should typically be
set during initialization, however, they can also be re-configured during Normal
Operation state.

The per-VC cell counts are stored in fields in the VC Table Records. The Cell
Counting Configuration Register specifies on a global basis, which type of cells
are counted in the per-VC counts. Program the Cell Counting Configuration
Register as required for the application.

The per-PHY cell counts are stored in Per-PHY Counter Memory (see Figure 5)
and are accessed through indirect registers. The Per-PHY Counter
Configuration Register specifies on a global basis which type of cells are counted
in the per-PHY counts. Program the Per-PHY Counter Configuration Register as
required for the application.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 31

Table 11 - Registers for Cell Counting Configuration

Register Address Description

Cell Counting
Configuration Register

(0x102) Specifies the type of cells counted in
per-VC counts. See the Data Sheet [1]
for details.

Per-PHY Counter
Configuration Register

(0x1A0) Specifies the type of cells counted in
per-PHY counts. See the Data Sheet for
details.

6.2.8 Policing Settings

The ATLAS-3200 supports per-VC and per-PHY transmission rate policing. The
policing configuration registers are listed in Table 12. These registers should
typically be set during initialization, however, they can also be re-configured
during Normal Operation state. See the Data Sheet [1] for detailed register
descriptions, and see Section 6.3.3 and Section 6.5.7 for per-PHY and per-VC
policing information respectively.

ATM cell flows are policed using the Generic Cell Rate Algorithm (GCRA) and
packet flows are policed using the Guaranteed Frame Rate (GFR) algorithm.

The ATLAS-3200 has eight pairs of configurations that the per-VC policers
select from. Each VC can have up to two per-VC GCRA policing operations
active.

The ATLAS-3200 has four global configurations the per-PHY policers select
from. Each PHY connection can optionally have one per-PHY GCRA policing
operation active.

Table 12 - Registers for Policing Configuration

Register Address Description

Per-VC Non-Compliant
Cell Counting
Configuration

0x130 Defines the VC non-compliant cells.

Connection Policing
Configuration 1 & 2

0x131 VC GCRA configurations 1 & 2

Connection Policing
Configuration 3 & 4

0x132 VC GCRA configurations 3 & 4

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 32

Register Address Description

Connection Policing
Configuration 5 & 6

0x133 VC GCRA configurations 5 & 6

Connection Policing
Configuration 7 & 8

0x134 VC GCRA configurations 7 & 8

PHY Policing
Configuration

0x142 PHY GCRA configurations 1, 2, 3 & 4

Per-PHY Non-Compliant
Cell Counting
Configuration

0x143 Defines the PHY non-compliant cells.

6.2.9 OAM Settings

Operations and Maintenance (OAM) operation is controlled by global
configuration settings, per-VC configuration settings, and per-Performance
Management settings. During initialization or at run-time the global OAM
configurations can be set to their desired values. See Section 6.8 OAM Cell
Processing for details on the global OAM configuration settings.

6.2.10 Search Key Settings

The Search Key settings that should be configured are contained in the register
listed in Table 13. See section 6.7 Virtual Connection Search Tree Modifying for
further information.

Table 13 - Registers for Search Key Configuration

Register Address Description

Search Engine
Configuration Register

0x10B Specifies construction of the Primary and
Secondary Search keys.

6.2.11 Interrupt Settings

After a reset all interrupts are disabled by default. While the ATLAS-3200 is in
standby state no interrupts will be generated. Enable the desired interrupts while
in Standby state and once the Normal Operation state is entered they will
become active. See section 6.10 Interrupt Handling for interrupt information.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 33

6.2.12 VC Table Settings

The VC Table can be modified during Normal Operation state as connections are
added and removed, however the VC Table Maximum Index Register (0x110) is
a control register that should be set during initialization. This register holds the
maximum VC Table address (VCRA[15:0]) and is used by the background
processes of the VC Table. This should be set to the maximum address
supported by the external SRAM. To ensure proper operation it is important that
the VC Table Maximum Index Register not be set to an address greater than that
supported by the external SRAM.

NOTE: For proper OAM processing the VC Table Maximum Index Register must
never be set to zero.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 34

6.3 Physical Connection Adding

This section is a guide to programming the routines to add a physical connection
to the ATLAS-3200. After the ATLAS-3200 has been initialized, the routines to
add physical connections will typically be run once to establish connections to
the attached hardware. A physical connection can either be configured to
transmit ATM cells or packets.

Adding a physical connection involves configuring four components: Physical ID
Mapping, Per-PHY Policing, Scalable Data Queues, and Polling and Servicing
Calendars. The general programming algorithm and descriptions of the
configuration settings for each of those components are discussed in the
sections below.

6.3.1 Algorithm

The algorithm to add a physical connection for ATM cell transmission is as
follows:

1. Ensure that this PHY’s ProcessPHY bit in the Per-PHY Processing Enable
Register (0x105 or 0x106) is set to logic 1.

2. Configure the physical ID mapping. (See Section 6.3.2 for settings.)

3. Set the per-PHY policing options. (See Section 6.3.3 for settings.)

4. Disable and flush the physical connection’s FIFO in the Bypass SDQ. To do
this perform an indirect write to the PHY’s Bypass SDQ entry with the
ENABLE bit in the Bypass SDQ Indirect Configuration Register set to logic 0
and the FLUSH bit set to logic 1

5. Activate the physical connection’s FIFO in the Output SDQ by allocating the
location and size of the FIFO. (See Section 6.3.4 for settings.)

6. If the output interface uses a polling and servicing calendar in the current
operating mode, update the appropriate Polling and Servicing Calendar to
include this physical ID. (See Section 6.3.5 for settings.)

7. Activate the physical connection’s FIFO in the Input SDQ by allocating the
location and size of the FIFO. (See Section 6.3.4 for settings.)

8. If the input interface uses a polling and servicing calendar in the current
operating mode, update the appropriate Polling and Servicing Calendar to

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 35

include this physical ID. The Calendars should only be changed while the
Cell Processor is in STANDBY mode. (See Section 6.3.5 for settings.)

The algorithm to add a physical connection for packet transmission is as
follows:

1. Configure the physical ID mapping. (See Section 6.3.2 for settings.)

2. Disable the physical connection’s FIFOs in the Input and Output SDQs. To
do this perform indirect writes to the PHY’s Input and Output SDQ entries with
the ENABLE bit in the Input and Output SDQ Indirect Configuration Registers
set to logic 0 and the FLUSH bit set to logic 1. (See Section 6.3.4 for
settings.)

3. Activate the physical connection’s FIFO in the Bypass SDQ by allocating the
location and size of the FIFO. (See Section 6.3.4 for settings.)

4. If the output interface uses a polling and servicing calendar in the current
operating mode, update the appropriate Polling and Servicing Calendar to
include this physical ID. The Calendars should only be changed while the
Cell Processor is in STANDBY mode. (See Section 6.3.5 for settings.)

6.3.2 Physical ID Mapping Settings

The RxLink and TxLink blocks can remap the physcial ID’s (PHY IDs) of the
incoming data flows to arbitrary PHY IDs. The remapped PHY IDs are used by
all downstream ATLAS-3200 internal components and external devices. See
Figure 2 to determine the downstream components from the RxLink and TxLink
blocks. The PHY ID mapping tables contain one entry for each of the 48
possible physical devices and are accessed through indirect registers. By
default after a reset each entry maps the external PHY ID to its identical PHY ID.

See section 7.6 PHY ID Mapping Table Interfacing for details on programming
the PHY ID mapping tables using the indirect access registers.

6.3.3 Per-PHY Policing Settings

The ATLAS-3200 supports one GCRA policing operation on each of the fourty
eight physical connections (PHYs). Per-PHY policing is active for a given PHY
when its corresponding bit is set in its PHY Policing Enable register. Per-PHY
policing is performed on the cumulative cell flow of all VC’s on the PHY that have
the PHY Police bit in the Policing Configuration field of their VC Table Record
set. For each VC, the PHYID[5:0] field in its VC Linkage Table Record
determines which of the 48 PHY policing instances is addressed.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 36

The PHY policing operations share four global GCRA configurations in the PHY
Policing Configuration Register (0x142). When policing is enabled for a given
PHY one of the four per-PHY GCRA configurations must be selected.

The policing configuration for each PHY is stored in internal RAM that is
programmed indirectly through the PHY Policing Address Access Control
Register and the PHY Policing RAM Data registers. See Section 7.7 PHY
Polcing RAM Interfacing for the programming algorithms using the indirect
registers.

All the registers related to per-PHY policing are listed in Table 14.

Table 14 - Registers for Per-PHY Policing Configuration

Register Address Description

PHY Policing Enable 1 0x140 Policing enable bits for physical
connections 0 to 31.

PHY Policing Enable 2 0x141 Policing enable bits for physical
connections 31 to 47.

PHY Policing Configuration 0x142 PHY GCRA configurations 1,2,3,
and 4. Each PHY policing
selects one of these
configurations. This will typically
be set during initialization.

Per-PHY Non-Compliant Cell
Counting Configuration

0x143 Defines the PHY non-compliant
cells. This will typically be set
during initialization.

PHY Policing RAM Address
and Access Control

0x144

PHY Policing RAM Data Row 0 0x145
PHY Policing RAM Data Row 1 0x146
PHY Policing RAM Data Row 2 0x147
PHY Policing RAM Data Row 3 0x148

Indirect access registers for
accessing the fourty eight PHY
Policing RAM tables. See
Section 7.7 PHY Polcing RAM
Interfacing for programming
algorithm

The procedure to disable per-PHY policing for a physical connection is as
follows:

1. Write the corresponding enable bit to 0 in either the PHY Policing Enable 1
Register or the PHY Policing Enable 2 Register.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 37

The procedure to enable per-PHY policing for a physical connection is as
follows:

1. Write the PHY Policing RAM entry for this PHY.

• Select appropriate values for the PHY I (Increment), PHY L (Limit),
Phy Police Config, PHY Policing Rollver FIFO EN, PHY VC Count
and Phy Action fields. See the Cell Rate Policing section in the
Data Sheet [1] for detailed description of the calculations used to
determine these values.

• Write zeroes to the Phy TAT LSB, Reserved, Phy TAT MSB, Phy
Non-Compliant1, Non-Compliant2, and Non-Compliant3 fields.

See Section 7.7 PHY Polcing RAM Interfacing for the indirect write
programming algorithm.

2. Write the corresponding enable bit to logic 1 in either the PHY Policing
Enable 1 Register or the PHY Policing Enable 2 Register.

6.3.4 Scaleable Data Queue Settings

There are three Scaleable Data Queues (SDQs) in the ATLAS-3200. Physical
connections transmit ATM cells using the Input SDQ and Output SDQ or transmit
packets using the Bypass SDQ. When the ATLAS-3200 is in Utopia mode only
cell transmission through the Input and Output SDQs is allowed. When the
ATLAS-3200 is in POS_PHY mode, each physical connection can either transmit
cells through the Input and Output SDQs or transmit packets through the Bypass
SDQ.

Each SDQ has 12288 bytes (192 ATM cells) of memory that is divided into 96
blocks. FIFOs are allocated within the SDQs by specifying a starting block
address and the size in blocks. The number of blocks that should be allocated to
a FIFO depend on the physical connection’s bandwidth. Suggested minimum
FIFO sizes are given in Table 15.

Table 15 - Suggested SDQ FIFO Sizes

Bandwidth FIFO size (blocks) FIFO size (cells) FIFO size (bytes)

Below STS-1 1 2 128
STS-1 or less 2 4 256

STS-3 6 12 768
STS-12 or STS-48 24 48 3072

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 38

Bandwidth FIFO size (blocks) FIFO size (cells) FIFO size (bytes)

STS-48 96 192 12288

To achieve optimum usage of the SDQs, the FIFOs should be allocated with
consideration given to the following:

• matching the length of the FIFO to the physical connection’s bandwidth

• aligning the FIFOs efficiently reduce unused memory

The operation of the SDQs is discussed in detail in the Operations sections of
the Data Sheet [1]. Refer to this section for the complete set of rules governing
assigning FIFOs in the SDQs. The registers related to the SDQs are listed in
Table 16.

Table 16 - SDQ Registers

Input SDQ Registers Output SDQ Registers Bypass SDQ Registers Description

Input SDQ Control
(0x240)

Output SDQ Control
(0x2A0)

Bypass SDQ Control
(0x2C0)

Reset and Transfer In Progress bits.

Input SDQ Interrupts
(0x241)

Output SDQ Interrupts
(0x2A1)

Bypass SDQ Interrupts
(0x2C1)

Interrupt status and enable bits, for
per-FIFO error conditions.

Input SDQ Interrupt ID
(0x242)

Output SDQ Interrupt ID
0x2A2)

Bypass SDQ Interrupt
ID 0x2C2)

Fields that identify the FIFO that
caused an interrupt.

Input SDQ Indirect
Address (0x244)

Output SDQ Indirect
Address (0x2A4)

Bypass SDQ Indirect
Address (0x2C4)

Input SDQ Indirect
Configuration (0x245)

Output SDQ Indirect
Configuration (0x2A5)

Bypass SDQ Indirect
Configuration (0x2C5)

Input SDQ Indirect
Cells and Packets
Count (0x246)

Output SDQ Indirect
Cells and Packets Count
(0x2A6)

Bypass SDQ Indirect
Cells and Packets Count
(0x2C6)

Indirect access registers. See
Section 7.4 SDQ Entry Interfacing for
details.

Input SDQ Cells
Accepted Aggregate
Count (0x247)

Output SDQ Cells
Accepted Aggregate
Count (0x2A7)

Bypass SDQ Cells
Accepted Aggregate
Count (0x2C7)

Aggregate count of all the ATM cells
accepted by the Output SDQ.
Ensure that the TIP bit in the SDQ
Control register is logic 0 before
reading this register.

Input SDQ Cells
Dropped Aggregate
Count (0x248)

Output SDQ Cells
Dropped Aggregate
Count (0x2A8)

Bypass SDQ Cells
Dropped Aggregate
Count (0x2C8)

Aggregate count of all the ATM cells
dropped by the Output SDQ due to
overflow or transfer errors. Ensure
that the TIP bit in the SDQ Control
register is logic 0 before reading this
register.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 39

The procedure to program the SDQs involves using indirect registers to write and
read from the SDQ memory. The basic SDQ read and write operations are
discussed in Section 7.4 SDQ Entry Interfacing.

The algorithm to enable a FIFO in an SDQ is as follows:

1. Determine the current configuration of all FIFOs in the SDQ and locate the
empty memory slots. Two general approaches can be used to determine the
current SDQ configuration:

• Read the SDQ Indirect Configuration Register for all 48 physical IDs, then
sort the data into a memory map.

• Store a copy of the SDQ configuration on the microprocessor. This
method reduces the number of external accesses and allows the use of
conveniently sorted data structures.

2. Determine the size of the FIFO that is required for the new physical
connection. Suggested values are given in Table 15, but if it is known that
there will be extra memory, larger values can be used.

3. Locate an empty memory slot of the required size using the current SDQ
configuration information.

4. Wait for the current FIFO to empty or force a flush, then write the SDQ entry
for the new FIFO with its ENABLE bit set to logic 1. See Section 7.4 SDQ
Entry Interfacing for the indirect writing algorithm.

5. If a local microprocessor copy of the SDQ configuration is being maintained,
update it to indicate the newly allocated memory blocks.

The algorithm to disable a FIFO in an SDQ is as follows:

1. Flush the current FIFO, then write the SDQ entry for the new FIFO with its
ENABLE bit set to logic 0. See Section 7.4 SDQ Entry Interfacing for the
indirect writing algorithm.

2. If a local microprocessor copy of the SDQ configuration is being maintained,
update it to indicate the newly freed memory blocks.

6.3.5 Polling and Servicing Calendar Settings

The physical interfaces that are bus masters use a Polling and Servicing
Calendar to perform weighted servicing of the PHYs. The exception to this is the

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 40

Ingress Utopia Rx Slave Interface which can present itself as a single PHY to the
Rx Master and uses its calendar to perform internal polling and servicing of the
PHYs.

There are three Polling and Servicing Calendars in the ATLAS-3200: one in the
RxLink, the RxPHY and the TxLink block. The operating mode that the ATLAS-
3200 is in determines which physical interfaces are active and thus which
calendars are used. The calendar use in each of the operating modes is shown
in Figure 2 and summarized in Table 17.

Table 17 - Polling and Servicing Calendar Use

ATLAS-3200 Input Interface ATLAS-3200 Output InterfaceMode
Interface Type Calendar Used Interface Type Calendar Used

Ingress Utopia RxLink YES RxPHY OPTIONAL

Ingress POS-PHY RxLink NO RxPHY YES

Egress Utopia TxPHY (none) TxLink YES

Egress POS-PHY TxPHY (none) TxLink YES

The Polling and Servicing Calendars are circular lists of PHY IDs that have a
configurable length up to a maximum of 128. The more often a given PHY ID
appears in the calendar, the more often it gets polled. The microprocessor is
responsible for programming the calendar. The ordering of the PHY IDs within
the calendars should follow the following principles:

• The number of entries that a given PHY has in a calendar should be
proportional to its bandwidth with respect to the bandwidth of the other PHYs.
Typically the lowest rate PHY will have one entry and all other PHYs will have
a proportionately higher number of entries. (See the Data Sheet [1] for
examples)

• The entries for a given PHY should be evenly distributed throughout the
calendar.

See the examples in Section 6.3.5.1 for a demonstration of these pronciples.

6.3.5.1 Calendar Table Configuration Examples

Some example Calendar configurations are given below. For further information
and an additional example see the Data Sheet [1].

With one connection, only one entry is needed reagardless of its speed as
shown in Table 18.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 41

Table 18 - Calendar Example: One STS-12

Calendar Address Calendar Data

0 STS-12a PHY ID

With two connections that have a rate ratio of 4:1 (STS-12:STS-3), the number
of entries of the faster connection should increase to the proportionate ratio.
See Table 19.

Table 19 - Calendar Example: One STS-12, One STS-3

Calendar Address Calendar Data

0 STS-12a PHY ID
1 STS-3a PHY ID
2 STS-12a PHY ID
3 STS-12a PHY ID
4 STS-12a PHY ID

In the case of a single fast connection and multiple slower connections, the
number of entries for the faster connection still remains at the proportion of its
rate with respect to the rate of the slowest connection (4:1), regardless of the
actual number of connections. The entries for a given connection are also
distrubuted as evenly as possible as shown in Table 20.

Table 20 - Calendar Example: One STS-12, Two STS-3’s

Calendar Address Calendar Data

0 STS-12a PHY ID
1 STS-3a PHY ID
2 STS-12a PHY ID
3 STS-12a PHY ID
4 STS-3b PHY ID
5 STS-12a PHY ID

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 42

6.3.5.2 Calendar Programming Procedure

The procedure to program the Calendars involves using the indirect registers
listed in Table 21 to write and read from the Calendar memory. Generally, the
calendar should be set up at device initialization and subsequently be left
unchanged. When the calendar length, or a calendar entry is updated during cell
or packet flow, there may be an impact on polling, which may result in loss of
data for a short period of time on any PHY that is transferring data.

Table 21 - Registers for Calendar Programming

RxL Calendar Registers RxP Calendar Registers TxL Calendar Registers Description

RxL Calendar Length

(0x20A)

RxP Calendar Length

(0x260)

TxL Calendar Length

(0x28A)

Index of the last calendar entry.
Once polling and servicing
pointers increment to this value
they loop back to 0.

RxL Calendar Indirect
Address and Data

(0x20B)

RxP Calendar Indirect
Address and Data

(0x265)

TxL Calendar Indirect
Address and Data

(0x28B)

Indirect address field, data field,
busy bit and read write bit.
Calendar entries programmed
indirectly through this register.

The algorithm to update the calendar entries to incorporate a new PHY is as
follows. These procedures apply identically to all of the Calendars unless noted
otherwise.

1. Determine the current configuration of Calendar to identify what PHYs are
currently in the Calendar. then determine the bandwidth of each PHY in the
Calendar. Two approaches can be used to do this:

• Read the Calendar entries from 0 up to the calendar length through
the Calendar Indirect Address and Data register. Create a list of all
the PHYs in the Calendar and determine the transmission speed of
each one. A PHY’s connection speed can be deduced indirectly by
the length of its SDQ FIFO (depending on the FIFO allocation
algorithm) but should likely be available from a data structure in the
microprocessor.

• Store a copy of the Calendar configuration on the microprocessor
with the transmission speeds of each PHY connection. This
method reduces the number of external accesses and allows the
use of convenient data structures.

2. Create a new Calendar table incorporating entries for the new PHY using the
guidelines discussed previously.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 43

3. Write the updated Calendar entries through the Calendar Indirect Address
and Data register. The Calendar should not be in active operation while its
entries are being updated otherwise cells may be corrupted.

4. Write the updated calendar length to the Calendar Length Register value.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 44

6.4 Physical Connection Removal

This section is a guide to programming the routines to remove a physical
connection from the ATLAS-3200. Removing a physical connection will typically
be done following a procedure that prevents data from being lost.

The algorithms to remove PHY’s transmitting ATM cells and Packets are given in
the following section. The four components used during this procedure are the
Physical ID Mapping, Per-PHY Policing, Scalable Data Queue, and Polling and
Servicing Calendar. Descriptions and programming algorithms for these
components are discussed in section 6.3 Physical Connection Adding so they
are not discussed again here.

6.4.1 Algorithm

The algorithm to remove a physical connection transmitting ATM cells is as
follows:

1. Disable the physical connection’s FIFO in the Input SDQ. To do this perform
an indirect write to the FIFO entry with the ENABLE bit set to logic 0.

2. Disable the physical connection’s FIFO in the Output SDQ. To do this
perform an indirect write to the FIFO entry with the ENABLE bit set to logic 0.

3. Update the Polling and Servicing Calendars that are currently being used to
remove all entries for this PHY. The Calendars should only be changed while
the Cell Processor is in STANDBY mode.

The algorithm to remove a physical connection transmitting packets is as
follows:

1. Disable the physical connection’s FIFO in the Bypass SDQ. To do this
perform an indirect write to the FIFO entry with the ENABLE bit set to logic 0.

2. Update the Polling and Servicing Calendars that are currently being used to
remove all entries for this PHY. The Calendars should only be changed while
the Cell Processor is in STANDBY.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 45

6.5 Virtual Connection Adding

This section is a guide to programming the routines to add a virtual connection
(VC) to the ATLAS-3200.

Each virtual connection is stored in the ATLAS-3200 as configuration settings in
a VC Table Records and VC Linkage Table Records. All the VC Table Records
and VC Linkage Table Records are organized in a VC Search Tree that allows
them to be efficiently searched for. To add a new VC, a VC Table Record and a
VC Linkage Table Record are configured and are then inserted into the VC
Search Tree.

The ATLAS-3200 supports Virtual Channel Connections (VCCs) and Virtual Path
Connections (VPCs). The VCCs carry F4 OAM flows and VPCs carry F5 OAM
flows. Each VCC may be independent or it may be part of a VPC, and
each.VPC can encapsulate multiple VCCs.

The sections below discuss the configuration of VC’s for VCC or VPC operation,
the general algorithm to add a VC, and then the specific VC Table Record
configuration settings.

6.5.1 Adding an Independent VCC

To add a VCC that will operate independently, without an associated VPC, the
only configuration requirement is:

• In its VC Linkage Table Record: VPC Pointer Active = logic 0

All F5 OAM flows may operate on this connection but no F4 flows will be
processed.

6.5.2 Adding an Independent VPC

To configure a VPC to operate independently, without any explicit enclosed
VCCs, the configuration requirements are:

• In its VC Linkage Table Record: VPC Pointer Active = logic 0

• In its VC Table Record: VCI = 0x0000

All F4 OAM flows may operate on this connection but no F5 OAM flows will be
processed. F5 OAM cells will be treated like user cells.

Search Tree Requirements:

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 46

When the ATLAS-3200 matches incoming cells to the VPC’s VC Table Record it
ignores the cell’s VCI value in the comparison. This is the special behaviour
caused by setting the VCI field in the VC Record Table to 0. As a result, all cells
which belong to this VPC can be correctly routed to the VPC record with only a
single search tree entry. The requirements on the search tree to allow this to
work are:

• The Selector field in the Secondary Search entries must decrease
monotonically at each subsequent branch in the Search Tree.

• All VPC cells must resolve to the same primary search key.

See Section 6.7 Virtual Connection Search Tree Modifying for more information
on the Search Tree.

6.5.3 Adding a VCC within a VPC

To add a VCC within a VPC, so that both F4 and F5 OAM flows may be used,
the VC Table Records, VC Linkage Table Records, and the Search Tree must all
meet specific configuratio requirements. The requirements for the VPC, the
VCCs, and the Search tree are listed below, and shown in Figure 10 and Figure
11.

VPC (F4) requirements:

• In its VC Linkage Table Record: VPC Pointer Active = logic 0

• In its VC Table Record: VCI = 0x0000

• Its VC Table Record must be in a different memory Bank than the VC Table
Records of all associated VCCs. There are 4 memory banks, interleaved by
the 2 LSBs of the VC Record Addresses as shown in Figure 3. Therefore
VCRA[1:0] of this VPC Table Record must not equal VCRA[1:0] for any of the
VCC Table Records.

VCC (F5) Requirements::

• In each VC Linkage Table Record: VPC Pointer Active = logic 1

• In each VC Table Record: VPC Pointer = VCRA of the VPC Table Record.

• Each VCC Table Record must be in a different memory Bank than that of its
associated VPC Table Record. There are 4 memory banks, interleaved by

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 47

the 2 LSBs of the VC Record Addresses as shown in Figure 3. Therefore
VCRA[1:0] of this VCC Table Record must not equal VCRA[1:0] of the VPC
Table Record.

Search Tree Requirements:

The same search tree requirements as listed in section 6.5.2 Adding an
Independent VPC.

PM Requirements:

To configure an F4 PM session on the VPC, the VC Linkage Table Records of
the VPC and its associated VCCs should be setup as follows:

• In the VPC VC Linkage Table Record: Set PM1_Address or PM2_Address to
point to the allocated PM Table Record, and set PM1_Active or PM2_Active.

• In each VCC VC Linkage Table Record: Set PM1_Address/PM2_Address
and PM1_Active/PM2_Active to point to the same PM Table Record as the
VPC. The other PMx_Address/PMx_Active may be used to configure a PM
session on only that VCC.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 48

Figure 10 - VCC within VPC Configuration Requirements

. . .

VCC1
VCC2

VCCn

VPC

Pointer Active = 1VPC Pointer

Pointer Active = 0

VCI = 0

Pointer Active = 1VPC Pointer

Pointer Active = 1VPC Pointer

VCC1

VCC2

VCCn

VPC

. . .

VC Record Table
VCRA[15:0] =
xxxxxxxxxxxxxxCC

VC Linkage Table
VCRA[15:0] =
xxxxxxxxxxxxxxCC

NOTES:
1) The VCC Tables must be in different
memory banks from the VPC Table. To
ensure this the two least significant bits of
all VCC VC Record Addresses are
different than the two least significant bits
of VPC VC Record Address:
YY is not equal to (AA, BB, or CC)

2) The VC Linkage tables reside in
external SRAM and the VC Record tables
reside in internal DRAM. However, their
entries share common addresses so the
VC Linkage tables can be viewed
conceptually as extensions of the VC
Record tables.

VC Record Table
VCRA[15:0] =
xxxxxxxxxxxxxxBB

VC Linkage Table
VCRA[15:0] =
xxxxxxxxxxxxxxBB

VC Record Table
VCRA[15:0] =
xxxxxxxxxxxxxxAA

VC Linkage Table
VCRA[15:0] =
xxxxxxxxxxxxxxAA

VC Record Table
VCRA[15:0] =
xxxxxxxxxxxxxxYY

VC Linkage Table
VCRA[15:0] =
xxxxxxxxxxxxxxYY

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 49

Figure 11 - VCC within VPC Search Tree Example

Primary Search Table

Secondary Search Table
 L = Left Branch
 R = Right Branch
 S = Selector

. . .

VPC
Record Table

S L R

S

VPC Ptr

R

. . .

VPC Ptr

VCC2
Record Table

L

VPC Ptr

VCCn
Record Table

S L R

VPC Ptr

VCC1
Record Table

. .
 .

6.5.4 Algorithm

1. Locate an available VC Record address (VCRA) and write a VC Table Record
to that address with the desired Configuration, Addressing, Policing, and
OAM settings. These settings are discussed in the sections below.

• If this virtual connection is a VCC (F5 flow) that will be joining an
existing VPC (F4 flow), ensure that its VCRA specifies a different
memory bank than the bank that the VPC is in.

• If this virtual connection is a VPC (F4 flow) ensure that the VCI field
is set to 0x0000.

2. Optionally configure a new Performance Management Table. If a
Performance Management session is desired for this connection either a new
PM Table Record can be created or the VC can link to an existing PM Table
Record. More than one VC can link to a single PM Table Record. See
Section 6.8 for details.

3. Write the VC Linkage Table Record to the Linkage partition of external
memory using the same address as the VC Table Record. Set the desired
PHY ID, and optionally set links to PM Table Records.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 50

• If this virtual connection is an independent VCC (F5 flow) ensure
that VPC Pointer Active is set to logic 0.

• If this virtual connection is a VCC (F5 flow) that will be joining an
existing VPC (F4 flow), set VPC Pointer Active to logic 1 and set
the VPC Pointer to the VCRA of the VPC’s VC Table Record.

• If this virtual connection is a VPC (F4 flow) ensure that VPC Pointer
Active is set to logic 0.

4. Enable the VC by writing a logic 1 to the Active bit in the VC Table Record
Configuration field.

5. Modify the Search Tables to insert a pointer to the new VC Table Record and
VC Linkage Table Record into the search tree. See section 6.7 Virtual
Connection Search Tree Modifying for details.

6.5.5 VC Table Configuration Settings

The Configuration field in a VC Table Record sets the VC’s general configuration
options. The bit settings are described in Table 22.

Table 22 - VC Table Record, Configuration Field

Bit Name Description

13 Reserved Always set to logic 0 when writing. Read value is
undefined.

12 Reserved Always set to logic 0 when writing. Read value is
undefined.

11 Active This should be set to 0 while configuring the
connection. When the connection is ready to be
activated the last step should be to set this to 1.
0 : This connection point is a User Network

Interface.
10 NNI

1 : This connection point is a Network-Network
Interface.

0 : Use Cfg0 configuration from the Cell Counting
Configuration Register (0x102)

9 Count Config Select

1 : Use Cfg1 configuration from the Cell Counting
Configuration Register (0x102)

8 APStoUP These bits set the per-VC routing options for this
VC. See Section 6.12 Cell Routing for cell flow
information.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 51

Bit Name Description

7:6 LB_Route[1:0]
5 FM_to_UP
4 VC_to_BCIF
3 VC_to_UP
2 Drop_VC

Enables the cell count fields to generate CRO
FIFO entries. See Section 6.9.2 Count Rollover
FIFO for detailed CRO FIFO information.
0 : Cell Count and Alternate Cell Count fields will

saturate at the maximum value. Use this
setting if the Count Rollover FIFO is not being
used. The Cell Count fields must be polled
periodically.

1 Rollover_FIFO_ena
ble

1 : Cell Count and Alternate Count fields will
Generate an entry in the Count Rollover FIFO
and rollover to 0 when their MSBs are set.
Use this setting if the Count Rollover FIFO is
being used.

0 : No entries in the Change of State (COS) FIFO
will be made by this connection.

0 COS_FIFO_enable

1 : Changes in the Status field will be entered in
the COS FIFO.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 52

6.5.6 VC Table Address Settings

Settings to control the VC’s addressing and address translation are contained in
nine fields in its VC Table Record. Those fields are described in the Table 23.
See the Datasheet [1] for further information.

Table 23 - VC Table Record Fields for Addressing Settings

Field Size Description

FieldB 12 The FieldB search key value that will be compared
against the value extracted from incoming cells.
Use the search key extraction parameters to
determine this value.

VPI 12 The VPI associated with the connection. If the
connection is a UNI then the first four bits should
be set to zero.

VCI 16 The VCI associated with this connection. If this is
a VPC connection then set this field to all zeroes.

Translated VPI 12 The VPI value that will be substituted on out-going
cells if the global register bit XVPIVCI is set. If
the global register bit XGFC is zero and the
connection is a UNI (NNI = 1) then the first four
bits of this field will not be substituted.

Translated VCI 16 The VCI value that will be substituted on out-going
cells if the global register bit XVPIVCI is set.

Translated HEC 8 The HEC value that will be substituted on out-
going cells if the global register bit XHEC is set.

Translated UDF 24 The UDF value that will be substituted on out-
going cells if the global register bit XUDF is set.

Translated Pre/Po 1 32 The Translated Pre/Po 1 value that will be
substituted on out-going cells if the global register
bit XPREPO is set.

Translated Pre/Po 2 32 The Translated Pre/Po 1 value that will be
substituted on out-going cells if the global register
bit XPREPO is set.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 53

Field Size Description

Bwds VCRA 16 The VC Record Address of the corresponding VC
in the opposite-direction ATLAS-3200. If the
OBCIF_Bwd_VCRA bit is logic 1, then this field
will be inserted, along with the PHY ID and other
routing information, in the prepended bytes of
cells sent to the Backwards Cell Interface.

6.5.7 VC Table Policing Settings

Settings to control the VC’s traffic rate policing are contained in ten fields in its
VC Table Record. Those fields are described in Table 24. See the Data Sheet
[1] for further information.

Table 24 - VC Record Fields for Policing Settings

Field Size Description

Policing
Configuration

11 Control bits to configure policing settings. The bits
that require coordinated settings to configure GCRA
or GFR policing are described in Table 25. See the
Data Sheet [1] for complete bit descriptions.

Maximum Frame
Length

11 Guaranteed Frame Rate policing parameter. Set this
according to GFR guidelines in Data Sheet [1] if this
connection is transmitting packets.

GFR State 3 This is an internally maintained state variable that
should initially be programmed to zero and not
changed thereafter. . Write protection can be done
using the write mask function when performing
writes to the VC Table Record SRAM.

Policing Reserved 3 This should be set to 0’s initially. Thereafter, it
should not be overwritten. This can be done using
the write mask function when performing writes to
the VC Table Record SRAM.

Action 2 2 Selects the action taken on cells non-conforming
with GCRA2. See Data Sheet [1] for action settings.

Inc 2 14 Parameter for GCRA2 based on desired traffic rate.
See Data Sheet [1] for calculations to determine this
value.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 54

Field Size Description

Limit 2 14 Parameter for GCRA2 based on desired traffic rate.
See Data Sheet [1] for calculations to determine this
value.

Action 1 2 Selects the action taken on cells non-conforming
with GCRA1. See Data Sheet [1] for action settings.

Inc 1 14 Parameter for GCRA1 based on desired traffic rate.
See Data Sheet [1] for calculations to determine this
value.

Limit 1 14 Parameter for GCRA1 based on desired traffic rate.
See Data Sheet [1] for calculations to determine this
value.

For a connection that is added over a PHY transmitting ATM cells, Generic Cell
Rate Algorithm (GCRA) policing is used, and for a connection over a PHY
transmitting packets Guaranteed Frame Rate (GFR) policing is used. Table 25
summarizes the Policing Configuration Field settings required to configure GCRA
for GFR policing. The Policing Configuration Field bits not shown in Table 25
control independent policing options. See the Data Sheet [1] for further details.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 55

Table 25 - GCRA and GFR Policing Configurations

Policing Configuration Field BitsPolicing Mode

MFL[10:0] GFR_MCR_PPD GFR Action 1 [1:0] Action 2 [1:0]

GCRA X X 0 any value any value

GFR

• partial packet
discard

• MFL test enabled

not all ones

GFR

• partial packet
discard

• MFL test disabled

0b1111111111

1

GFR

• actions on frame
boundaries as per
GFR standard

• MFL test enabled

not all ones

GFR

• actions on frame
boundaries as per
GFR standard

• MFL test disabled

0b1111111111

0

1 11 01, 10, or 11

X = don’t care, this bit will not affect policing operation

6.5.8 VC Table OAM Settings

The settings to control OAM cell processing on a per-VC basis are discussed in
Section 6.11 OAM Cell Processing. See that section for details on the OAM
settings.

For a quick reference, the fields in the VC Table Records that are related to OAM
cell processing are listed in Table 26.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 56

Table 26 - VC Table Record Fields for OAM Settings

Field Size Description

OAM Configuration 23 Configuration bits.
See Table 37 and Table 39 in
Section 6.11 OAM Cell
Processing for descriptions of
the bit settings.

Segment Received Defect Type 8
Segment Received Defect Location 128
ETE Received Defect Type 8
End-to-End Received Defect Location 128

See Table 37 in Section 6.11
OAM Cell Processing for
descriptions of these fields

6.5.9 Performance Management Settings

To setup an F4 PM Session on a VPC that contains one or more VCCs, the VC
Linkage Table Records of the VPC and VCCs must be configured as described
in Section 6.5.3. To setup an F5 PM Session on a VCC or an F4 PM Session on
an Independent VCC the VC Linkage Table Records have no special
requirements.

See Section 6.11.3 PM Cell Processing for details on the performance
management settings and algorithms for creating and linking to a PM Table
Record.

6.5.10 Example Routines

6.5.10.1 Definitions
/************** Structures **********************/

typedef struct {
UINT1 phyID
BOOLEAN pm2Active
UINT1 pm2Addr
BOOLEAN pm1Active
UINT1 pm1Addr
BOOLEAN vpcPointerActive
UINT1 vpcPointer

} sVC_LINKAGE_TABLE

typedef struct {

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 57

UINT1 phyID
UINT4 fieldA
UINT4 fieldB
UINT2 VCI
UINT4 VPI

} sROUTING_WORD

6.5.10.2 vcAddVCC

This routine adds a new Virtual Channel Connection (VCC). It optionally links
the new VCC to an existing VPC.

Inputs: addToVPC : if TRUE then this VCC will link to the VPC VC
Table Record at the address specified

vcraVPC : contains the VC Record Address of a VPC if
addToVPC is TRUE

Outputs: vcra : VC Record Address where the VC Table
Record was added.

Pseudocode:

VOID vcAddVCC(
BOOLEAN addToVPC
UINT4 vcraVPC
UINT4 *vcra

{
sVC_RECORD_TABLE vcRecordTable
sVC_LINKAGE_TABLE vcLinkageTable
BOOLEAN validAddressFound
sROUTING_WORD routingWord

/* write all the VC Table Record settings */
vcRecordTable.Configuration = /* desired setting */
vcRecordTable.fieldB = /* desired setting */
vcRecordTable.VCI = /* desired setting */
... /* set VC Table Record fields as desired */

/* optionally create a performance management session */
call routines to create one or two PM Table Records

/* write the VC Linkage Table settings */

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 58

if (addToVPC = TRUE) then /* link to the VPC */
vcLinkageTable.vpcPointerActive = TRUE
vcLinkageTable.vpcPointer = vcraVPC
... /* set remaining Linkage fields as desired */

else /* VCC is independent so deactivate VPC Pointer */
vcLinkageTable.vpcPointerActive = FALSE
... /* set remaining Linkage fields as desired */

end if

/* get a free VCRA address from the microprocessor maintained list of */
/* available addresses */
if (addToVPC = TRUE) then
/* must get an address in a different bank than the VPC */

/* the bank is determined by two LSBs of the vcra */
restrictedBank = (vcraVPC & 0x00000003)
/* get a free address that is not in the restricted bank*/
*vcra = getFreeVcraBankRestriction(restrictedBank)

else
/* get any free address */
*vcra = getFreeVCRA()

end if

/* write the VC Table Record and VC Linkage Table Records to Memory */
vcRecordTableWrite(vcra, &vcRecordTable)
sramWrite(vcra, SRAM_LINKAGE, vcLinkageTable)

/* enable the VC */
vcEnable(vcra)

/* insert this connection into the search tree*/
routingWord.phyID = vcLinkageTable.phyID
routingWord.VCI = vcRecordTable.VCI
routingWord.VPI = vcRecordTable.VPI
routingWord.fieldA =/*depends on search configuration and pre-postpend*/
routingWord.fieldB =/*depends on search configuration and pre-postpend*/
searchTreeInsert(vcra, routingWord)

return SUCCESS
}

6.5.10.3 vcAddVPC

This routine adds a new Virtual Path Connection (VPC). This function assignes
the VPC’s VC Table Record to an arbitrary memory bank. Therefore if any
VCC’s will supsequently be linked to this VPC, it is their responsibility to ensure

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 59

compatible addresses (VCCs in different memory bank than the VPC). This
approach assumes that VPC will always be created first, before any VCCs which
will be enclosed in it.

Inputs: (none)

Outputs: vcra : VC Record Address where the VC Table
Record was added.

Pseudocode:

VOID vcAddVPC(
UINT4 *vcra

{
sVC_RECORD_TABLE vcRecordTable
sVC_LINKAGE_TABLE vcLinkageTable
sROUTING_WORD routingWord

/* write all the VC Table Record settings */
vcRecordTable.VCI = 0
vcRecordTable.Configuration = /* desired setting */
vcRecordTable.fieldB = /* desired setting */
... /* set remaining VC Table Record fields as desired */

/* optionally create a performance management session */
call routines to create one or two PM Table Records

/* write the VC Linkage Table Record settings */
vcLinkageTable.vpcPointerActive = FALSE
... /* set remaining Linkage fields as desired */

/* get a free VCRA address from the microprocessor maintained list */
/* this assumes that any VCCs that will be linked to this have not */
/* been created yet so there are no restrictions on which memory */
/* bank can be used */
vcra = getFreeVCRA()

/* write the VC Table Record and VC Linkage Table Records to Memory */
vcRecordTableWrite(vcra, &vcRecordTable)
sramWrite(vcra, SRAM_LINKAGE, vcLinkageTable)

/* enable the VC */
vcEnable(vcra)

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 60

/* insert one entry into the search tree with a of VCI = 0. This will */
/* catch all VPC cells with VCI’s 0-15 */
routingWord.phyID = vcLinkageTable.phyID
routingWord.VCI = 0
routingWord.VPI = vcRecordTable.VPI
routingWord.fieldA =/*depends on search configuration and pre-postpend*/
routingWord.fieldB =/*depends on search configuration and pre-postpend*/
searchTreeInsert(vcra, routingWord)

return SUCCESS
}

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 61

6.6 Virtual Connection Removal

This section is a guide to programming the virtual connection removal routines.
When an independent VPC or a VCC is removed, its VC Table Record can be
directly removed. To remove a VPC connection which contains explicit VCCs
however, the VC Table entries for the VCCs should be before removed before
removing the VPC’s VC Table.

The sections below discuss the algorithm for removing a VC and provide
example code.

6.6.1 Algorithm

1. Disable the VC by writing a logic 0 to the Active bit in the VC Table Record.

2. Modify the Search Tables to remove the VC Table Record and VC Linkage
Table Record from the search tree. See the section 6.7 Virtual Connection
Search Tree Modifying for details.

3. Clear the VC Linkage Table Record and VC Table Record.

4. If a performance management session was active for this VC, determine if it
is still in use by other connections. The microprocessor should maintain a
data structure containing a list of the free PM Table Records and for each
active PM Table Record a list of which VCs are using it. If no other VCs are
using the PM Table Record then mark it as a free table in the
microprocessor’s data structure.

6.6.2 Example Routines

6.6.2.1 vcRemove

This routine removes a Virtual Connection. The specific implementation of this
routine will vary as the application specific methods for adding different
connection types and the coordination of connections on multiple ATLAS-3200
devices will vary.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 62

Inputs

device Device to access

Outputs

vcra Virtual Connection Record address

Pseudocode:

UINT1 vcRemove(
UINT4 vcra

{
sVC_RECORD_TABLE vcRecordTable
sVC_LINKAGE_TABLE vcLinkageTable
UINT4 primaryKey
sSEC_SEARCH_KEY secondaryKey

/* disable the VC */
vcDisable(vcra)
/* remove VC Table Record and VC Linkage Table Record */
searchTreeRemove(primaryKey, secondaryKey)

/* check if performance management session can be freed */
check data structure stored on microprocessor
if can be freed then

update data structure
end if

/* clear all the VC Table Record settings */
vcRecordTable.Configuration = 0
vcRecordTable.bwdDirVCRA = 0
vcRecordTable.VCI = 0

...
vcRecordTable.OAMConfiguration = 0

/* clear all the VC Linkage Table Record settings */
vcLinkageTable.phyID = 0

...
vcLinkageTable.vpcPtr = 0

/* write the cleared VC Table Record and VC Linkage Table Record to */
/* memory */
call routines to write to VC RAM and external SRAM

return SUCCESS
}

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 63

6.7 Virtual Connection Search Tree Modifying

This section is a guide to configuring the VC search engine and to programming
the routines to traverse and modify the VC search tree structure.

The ATLAS-3200 uses a binary search tree to identify incoming cells and to
determine the record in the VC Table with which they are associated. The binary
search tree is stored in Search Tables which are located in external SRAM (see
Figure 3). The search key is a configurable combination of the cell’s prepend,
postpend, header and PHYID that allows tailoring to the specific application. The
search key configuration is controlled by the Search Engine Configuration
Register (0x 10B) and is typically set once during the ATLAS-3200 initialization.

The ATLAS-3200 has the ability to navigate the search tree but the
microprocessor has full responsibility for maintaining the structure of the search
tree. When entries are added and removed from the search tree the
microprocessor must navigate the search tree and make modifications to the
Search Tables such that its integrity is maintained.

The following sections describe the search key settings, the search tree
structure, and three search tree algorithms. The algorithms are for traversing a
search tree, inserting a new record into a tree, and removing a record from a
tree. Example pseudocode routines are provided in the last section to further
demonstrate the search tree operations.

For a detailed example of a search tree scenario, see Appendix B: VC Binary
Search Tree Example.

6.7.1 Search Key Settings

When a cell enters the ATLAS-3200, a Routing Word is constructed by
concatenating its cell prepend, cell postpend, and cell header. A Primary and
Secondary Search Key are then created by extracting selected portions of the
Routing Word and the PHYID. The Search Engine Configuration Register
(0x10B), described in Table 27, controls the Search Key. Figure 12 illustrates the
Search Key construction. The Search Engine Configuration Register (0x10B) will
typically be programmed during ATLAS-3200 initialization and may be configured
as required for the application.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 64

Table 27 - Search Engine Config. Register (0x10B) Fields

Field Description

0 : Cells from the IBCIF are assumed to carry a valid
16-bit VC Record Address and are not searched
by the search engine.

Search_From_IBCIF

1 : A search key is constructed from cells from the
Input Backwards Cell Interface and the Search
Tree is navigated to find the corresponding VC
Record Address.

LPHY[2:0] Number of PHY ID bits in the primary search key. The
condition that LPHY + LA <= 17 must be met.

LA[4:0] Length of the search key Field A field. The condition
that LPHY + LA <= 17 must be met.

STARTA[6:0] Location of the MSB of FieldA within the routing word
LB[3:0] Length of the search key Field B field.
STARTB[6:0] Location of the MSB of FieldB within the routing word

Note: STARTA and STARTB specify the where the Most Significant Bits of the
extracted fields will be, NOT the Least Significant Bits.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 65

Figure 12 - Search Key Construction

Cell HeaderCell Prepend + Postpend

VPI HEC/UDFField B

31 063 36

ST
AR

TB

ST
AR

TB
 -

LB

ST
AR

TA

ST
AR

TA
 -

LB

Length <= 128

0's

LA
0-17 bits

PHYID Field A

0-6
bits

LPHY
0-6 bits

0's padding + LPHY + LA = 17 bits

0's

LB
0-12 bits

PHYIDField B

0-12
bits

6 bits

0's padding + LB + 34 = 46 bits

12 bits

VPI

Field A

Routing Word

Primary Key Secondary Key

VCI

5152

VCI

16 bits

6.7.2 Search Tree Structure

The Search Tables are located in the lower partition of external SRAM as shown
in Figure 3. At each Search Table address there is a Primary and Secondary
Search entry, however, the Primary and Secondary Entries are treated
independently. The Search Table structure is shown in Table 28 and the fields
are described in Table 29.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 66

Table 28 - Search Table Field Structure

Secondary Search Entry Primary Search
Entry

Selector Left
Leaf

Left Branch Right
Leaf

Right Branch Primary Search
Pointer

[63:62] [61:56] [55] [54] [53:37] [36] [35] [34:18] [17] [16:0]

Shaded cells = Reserved

Table 29 - Search Table Field Descriptions

Field Description

Primary Search
Pointer[16:0]

Address of the Search Table entry that contains a root
Secondary Search entry

Right
Branch[16:0]

The pointer to the node accessed if the decision bit is a logic
zero. If "Right Leaf" is a logic one, "Right Branch" contains
the SA[15:0] address identifying the VC Table Record for the
incoming cell.
If "Right Leaf" is a logic zero, "Right Branch" contains the
SA[15:0] value pointing to another Secondary Search Table
entry.
0 : Right Branch value points to another node in the binary

tree.
Right Leaf

1 : Right branch is a leaf and the binary search terminates
if the decision bit is a logic zero.

Left Branch[16:0] The 16-bit SRAM address pointing to the node accessed if
the decision bit is a logic one. If "Left Leaf" is a logic one,
"Left Branch" contains the SA[15:0] address identifying the
VC Table Record for the incoming cell. If "Left Leaf" is a
logic zero, "Left Branch" contains the SA[15:0] value
pointing to another Secondary Search Table entry.
0 : Left Branch value points to another node in the binary

tree.
Left Leaf

1 : Left Branch is a leaf and the binary search terminates if
the decision bit is a logic one.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 67

Field Description

Selector[5:0] Index to a bit in the Secondary Search Key that is the
“Decision Bit” upon which the branching decision is based.
A value of zero represents the LSB. If the Decision Bit is a
logic one, the "Left Leaf" and "Left Branch" fields are
subsequently used. Likewise, if the Decision Bit is a logic
zero, the "Right Leaf" and "Right Branch" are subsequently
used.
Typically, the Selector value decreases monotonically with
the depth of the tree, but other search sequences are
supported by the flexibility of this bit. (i.e. typically, one
starts from the most significant bit side and heads towards
the least significant bit when selecting the bits to be used for
branching decisions)

Each Primary Entry can have a binary tree composed of the Secondary Search
Entries below it. An example search tree structure in shown in Figure 13. For a
detailed search tree example see Appendix B: VC Binary Search Tree Example.

Figure 13 - Search Tree Structure

Prim a ry Ke y

0
. . .

(LA + LP)

2 - 1
Prim a ry

Se arc h Ta b le

Se co n d ary
Se arc h Ta b le

VC
Table

Record

Left
Branch

Right
Branch

Root

LeafLeaf

Leaf

Leaf

Primary Search
Table Entry

Secondary Search
Table Entry

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 68

6.7.3 Algorithm for Finding a Record

Search tree traversing is used to find the VC Table Record and VC Linkage Table
Record that a given ATM cell is associated with. This is automatically performed
by the ATLAS-3200 for all arriving cells, and can also be performed by the
microprocessor for search tree maintenance purposes. To find a search tree
entry, the virtual connection’s Prepend, Postpend, and Header fields must be
known. The Search Tree can then be traversed to find the entry using the
following algorithm:

1. Construct a Routing Word from the VC’s Prepend, Postpend, and Header.

2. Extract the Primary Search Key and a Secondary Search Key from the
Routing Word and PHYID using the configuration specified in the Search
Engine Configuration Register (0x10B).

Figure 14 - Search Tree Find, Step 2

Primary KeySecondary Key

3. Read the Primary Search Entry at the address specified by the Primary
Search Key. The value of the Primary Search Pointer field at this location
addresses a Secondary Search Entry.

Figure 15 - Search Tree Find, Step 3

Primary KeySecondary Key

S L R

Primary Search
Table

Secondary Search
Table

.

4. Read the Secondary Search Entry at the address specified by the Primary
Search Entry. This Secondary Search entry is the root node of the binary
search tree for this connection.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 69

Figure 16 - Search Tree Find, Step 4

L

Primary KeySecondary Key

S R

Primary Search
Table

Secondary Search
Table

Selector = Bit X

.

5. Look at the bit in the Secondary Search Key at the bit position identified by
the Selector Field. (e.g. If Selector = 0 then look at the least significant bit, or
if Selector = 3 then look at the fourth bit.) This bit serves as the Decision Bit
to determine which direction to branch. If the Decision Bit is 0 then the right
branch is taken, if the Decision Bit is 1 then the left branch is taken.

Figure 17 - Search Tree Find, Step 5

Primary KeySecondary Key

Primary Search
Table

Secondary Search
Table

Selector = Bit X

.

Right BranchLeft Branch

S L R

6. Look at the either the Right Leaf bit or the Left Leaf bit, as determined by the
branch direction decision.

• If the Leaf bit is 0 then this branch points to another Secondary
Search Entry node in the tree and the search continues from the
new node. Read the Secondary Search Entry at the address
specified by the Branch field and LOOP back to Step 5.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 70

Figure 18 - Search Tree Find, Step 6a

Primary KeySecondary Key

S L R

Primary Search
Table

Secondary Search
Table

Selector = Bit X

S L R

Selector = Bit Y

.

• If the Leaf bit is 1 then this is a leaf node and the Branch field
contains the VC Record Address (VCRA) of a VC Table Record and
VC Linkage Table Record. The search has terminated at a leaf, so
CONTINUE to Step 7.

Figure 19 - Search Tree Find, Step 6b

Primary KeySecondary Key

Primary Search
Table

Secondary Search
Table

.

VC
Record

Selector = Bit X
S L R

7. Read the VC Table Record and VC Linkage Table Record at the address
specified by the Branch field to determine leaf’s Field B, VPI, VCI, and PHYID
values. Compare these values to the Secondary Key used in the search to
determine if there is a match. When the ATLAS-3200 is performing this
search for an incoming cell, the cell is processed if a match is found. If a
match is not found the cell is treated as an Unprovisioned Connection cell
and will either be dropped or routed to the MCIF depending on the value of
the BSDVCtoUP bit..

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 71

Figure 20 - Search Tree Find, Step 7

Primary KeySecondary Key

Primary Search
Table

Secondary Search
Table

.

VC
Record

S L R

Selector = Bit X

6.7.4 Algorithm for Inserting a Record

To insert a new VC Table Record into the search tree perform the following
steps. This assumes that the new VC Table Record has been written to memory
and its address is known.

1. Construct a Routing Word from the information in the VC Table Record, then
construct the Primary and Secondary Search Keys using the Search Engine
Configuration Register (0x10B) settings.

2. Traverse the search tree (using the replica VC Table structure) to determine
the insertion point. The last pointer accessed in the search shall be the one
modified, be it a Primary Search Table entry, left branch or right branch.

3. Locate a free Secondary Search Entry and write (see Section 7.2.2 Writing
External SRAM Entries) initialization values to it. The only exception to this is
when a single VC Table Record exists in a tree, in which case the solitary
Secondary Search Table entry is modified.

4. Perform a single SRAM write (see Section 7.2.2 Writing External SRAM
Entries) to incorporate the new Secondary Search Table entry in the existing
tree structure. This step must be performed last to ensure a binary search in
progress is not corrupted.

Five distinct insertions cases are possible based on the existing tree structure,
and are detailed in the sections that follow. In the accompanying diagrams, the
following key is used:

a, b, c: Pointers to Secondary Search Table records

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 72

w, x, y, z: Pointers to VC Table Records

k, m, n: Selector field contents

Shaded: Fields which have been modified in the process.

6.7.4.1 Case 1: Insertion into an Empty Tree

The binary tree is empty. There are no other connections that have the same
Primary Search Key.

In this case, modify the null Primary Search Table pointer to point to a newly
created Secondary Search Table entry. Because no bits within the Secondary
Search Key are required, both the left and right branches of the Secondary
Search Table entry point to the same VC Table Record. The selector is a ‘don’t
care’.

NOTE: The Secondary Search Table entry that is a root node CANNOT be at
address 0. An entry of 0 in the Primary Search Pointer field is reserved to
indicate an empty tree.

Figure 21 - Search Tree Insertion into an Empty Tree

Primary
Search Table

BEFORE AFTER

1 1

0

0 z z

a

VC
Table

Record

6.7.4.2 Case 2: Insertion into a Single Record Tree

The binary tree contains only a single VC Table Record.

Modify the selector field to index the most significant bit of the Secondary Search
Key that differs between the new and existing connection. Modify the left or right
branch, as appropriate, to point to the newly created VC Table Record.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 73

Figure 22 - Search Tree Insertion into a Single Record Tree

Primary
Search Table

BEFORE AFTER

11 1 10 nz z y z

a a

VC
Table

Record

VC
Table

Record

VC
Table

Record

The diagram illustrates the case where the new VC has a one in the decision bit
position and the existing VC has a zero in the same bit position. If the new VC
has a zero in the decision bit position, modify the right branch instead.

6.7.4.3 Case 3: Insertion at Root of a Tree

The insertion point is at the root of the tree.

This occurs when the new decision bit index is greater any of the indices
currently in the search tree. In this case, modify the Primary Search Table entry
to point to the newly created Secondary Search Table entry. The New
Secondary Search Table entry points to the new VC Table Record and the old
tree root.

Figure 23 - Search Tree Insertion at the Root of a Tree

Primary
Search Table

BEFORE AFTER

1

1 1

0

0 1

01

1 1

n

m m

n

k

bx

zy

x b

zy

wa

a c

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 74

6.7.4.4 Case 4: Insertion at Middle of a Tree

The insertion point is in the middle of the binary tree. The new Secondary
Search Table entry points to the new VC Table Record and an existing node in
the tree.

Modify the parent of the existing node to point to the new Secondary Search
Table entry in the final step of the insertion.

Figure 24 - Search Tree Insertion at Middle of a Tree

Primary

Search Table

BEFORE AFTER

1

1 1

0 0 1

10

1 1

k

m m

n

k

a a

b z

y x

b

zc

w

y x

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

6.7.4.5 Case 5: Insertion at Leaf

The new Secondary Search entry is inserted at a leaf. The search for a
candidate insertion point ends on a node which already points to a VC Table
Record. The new Secondary Search entry points to the existing VC Table
Record and the new VC Table Record.

Modify the existing Secondary Search Table entry to point to the new Secondary
Search Table entry in the final step of the insertion.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 75

Figure 25 - Search Tree Insertion at Leaf

Primary
Search Table

BEFORE AFTER

1

1 1

0 0 1

1

1 1

a a

b z

x y

k

n

b zk

x cn

ywm

0

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

VC
Table

Record

6.7.5 Algorithm for Removing a Record

To remove a VC Table Record from the search tree perform the following steps.

The following are the microprocessor actions required to remove a connection:

1. Construct a Routing Word from the information in the VC Table Record, then
construct the Primary and Secondary Search Keys using the Search Engine
Configuration Register (0x10B) settings.

2. Traverse the search tree (using the replica VC Table structure) to locate the
Secondary Search Table entry pointing to the connection's VC Table Record.

3. Perform an SRAM write to modify the parent node (be it the Primary Search
entry or another Secondary Search entry) of the Secondary Search entry
being removed to point to the node remaining after the connection removal.
The only exception to this is when only two VC Table Records exist in a tree,
in which case the solitary Secondary Search entry is modified. The VC is
now considered unprovisioned and any cells belonging to the VC will be
discarded.

4. Tag in software the removed Secondary Search entry as free.

5. Read the final statistics for the connection from the VC Table Record and tag
in software the VC Table Record address as free. Also, clear the "Active" bit
in the VC Table Record.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 76

The search tree record removal process examples are not illustrated because
the results are exactly the reverse of the search tree record insertion process.
The five cases described in Section 6.7.4 Algorithm for Inserting a Record apply
to removal if the Before and After diagrams are reversed.

6.7.6 Example Routines

6.7.6.1 Definitions

/************** Structures **********************/

typedef struct {
UINT1 phyID
UINT4 fieldA
UINT4 fieldB
UINT2 VCI
UINT4 VPI

} sROUTING_WORD

typedef struct {
UINT1 selector
UINT1 leftLeaf
UINT4 leftBranch
UINT1 rightLeaf
UINT4 rightBranch

} sSEC_SEARCH_ENTRY

typedef UINT1 sSEC_SEARCH_KEY[6] /* holds 46 bit secondary search key*/

typedef struct {
UINT4 primaryKey /* primary key used for the search */
sSEC_SEARCH_KEY secondaryKey /* secondary key */
BOOLEAN matched /* TRUE= search was successful */
BOOLEAN isRoot /* TRUE= search terminated on root node */
BOOLEAN isEmptyTree /* TRUE= no secondary entries for this */

/* primary key */
BOOLEAN isSingleBranch /* TRUE = secondary tree has only one */

/* leaf */
UINT4 leafAddr /* address of secondary key found */

/* during the search */
sSEC_SEARCH_KEY leafSecondaryKey /* secondary key of found record */

/* used for comparison to determine if */
/* search matched */

UINT1 finalDirection /* last search direction that the leaf */
/* was found on */

UINT4 finalNodeAddr /* address of final node searched */

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 77

sSEC_SEARCH_ENTRY finalNode /*secondary search entry of final node*/
UINT1 prevDirection /* previous branch direction taken to */

/* reach the final node */
UINT4 prevAddr /* address of node that points to the */

/* final node */
UINT1 newSelector /* most significant bit that is */

/* different between the search */
/* Secondary Key and the leaf's */
/* Secondary Key */

} sSEARCH_RESULTS

/************** Global variables ****************/

/* Shadow copy of the Primary Search Table in the ATLAS-3200 */
/* external SRAM. */
UINT4 gPrimarySearchTable[]

/* Shadow copy of the Secondary Search Table in the ATLAS-3200 */
/* external SRAM. */
sSEC_SEARCH_ENTRY gSecondarySearchTable[]

/* Table of the Secondary Search Keys of all current VC Tables.*/
/* When a leaf has been reached in a search, the secondary key */
/* needs to be compared to determine if a match was found. This*/
/* table can be read instead of having to read the VC Record */
/* Table and VC Linkage Table Record and recalculate the key. */
sSEC_SEARCH_KEY gSecondarySearchKeys[]

/*************** Constant Definitions ***********/

/* Values for the decision bit chosen from Secondary Search Key*/
#define DECISION_BIT_LEFT 1
#define DECISION_BIT_RIGHT 0

/* Values for Branch fields in the Secondary Search Entry */
#define LEAF 1
#define NOT_LEAF 0

/* Values for the search direction bit in search results structure */
#define SEARCH_DIRECTION_LEFT 1
#define SEARCH_DIRECTION_RIGHT 0

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 78

6.7.6.2 searchTreeInsert

This routine inserts an entry into the search table for a new Virtual Connection.
A search of the current search table is performed then the appropriate insertion
routine is called based on the results of the search. It is assumed that the VC
Table Record and VC Linkage have already been written to memory and their
addresses are known.

Inputs: vcra : VC Record Address that the final Secondary
Search Tree entry will point to.

routingWord : data structure containing the information about
the connection that is required to construct the
Primary and Secondary Search Keys,

Outputs: (none)

Pseudocode:

searchTreeInsert (
UINT4 vcra
sROUTING_WORD routingWord

{
sSEARCH_RESULTS *searchResults
sSEARCH_RESULTS *insertionResults
UINT4 primaryKey
sSEC_SEARCH_KEY secondaryKey

primaryKey = constructPrimaryKey(routingWord)
secondaryKey = constructSecondaryKey(routingWord)

searchTreeTraverse(primaryKey, secondaryKey, searchResults)

if (searchResults->matched = TRUE) then
return ERROR_VC_EXISTS

end if

if (searchResults->isEmptyTree = TRUE) /* case 1 */
insertToEmptyTree(vcra)

else if (searchResults->isSingleBranch = TRUE) /* case 2 */
insertToSingleBranch(vcra, searchResults)

else if (searchResults->newSelector < searchResults->finalNode.selector)
/* case 5 */
insertToEndNode(vcra, searchResults)

else /* either case 3 or case 4 */
/* In these cases the previous search traversed the tree past */

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 79

/* the point where the new leaf should be inserted based on the */
/* algorithm of decreasing selector values So, perform a new */
/* search to find the correct insertion point */
searchFindInsertionPoint(searchResults, insertionResults)
if (insertResults->isRoot = TRUE) /* case 3 */

insertToRoot(vcra, insertionResults)
else /* case 4 by default */

insertToMiddleBranch(vcra, insertionResults)
end if

end if

return
}

6.7.6.3 searchTreeTraverse

This routine traverses the search tree using the specified primary and secondary
search keys until a leaf is reached. The results of the tree traversal are stored in
the search results structure. The results are used by other routines to determine
how to modify the tree to add or remove a leaf.

Inputs: primaryKey : key used to locate Primary Search Entry
secondaryKey : key used to traverse the binary search tree

composed of Secondary Search Entries

Outputs: searchResults : results from the search tree traversal.
Contains information about the nodes
surrounding the location where the search
terminated.

Pseudocode:

searchTreeTraverse(
UINT4 primaryKey,
sSEC_SEARCH_KEY secondaryKey,
sSEARCH_TREE_RESULTS *searchResults)

{
BOOLEAN foundLeaf
UINT1 decisionBit
UINT1 currentDirection
UINT4 previousNodeAddr
sSEC_SEARCH_ENTRY curentNode
UINT4 currentNodeAddr
UINT4 nextNodeAddr

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 80

searchResultsInitialize(searchResults) /*initialize result values*/

/* get address of the root node in the secondary search tree */
currentNodeAddr = gPrimarySearchTable[primaryKey]

if (currentNodeAddr = 0) then /* case 1 - the search tree is empty */
searchResults->isEmptyTree = TRUE
return

end if

/* initialize while loop variables */
previousNodeAddr = currentNodeAddr
foundLeaf = FALSE

while (foundLeaf = FALSE)
currentNode = gSecondarySearchTable[currentNodeAddr]
currentDirection = getDecisionBit(secondaryKey,

currentNode.selector)
if (currentDirection = DECISION_BIT_LEFT) then /* go left */

if (currentNode.leftLeaf = LEAF) then
foundLeaf = TRUE

end if
nextNodeAddr = currentNode.leftBranch

else /* go right */
if currentNode.rightLeaf = LEAF

foundLeaf = TRUE
end if
nextNodeAddr = currentNode.rightBranch

end if

if (foundLeaf = FALSE) /* continue search */
searchResults->previousDirection = currentDirection
previousNodeAddr = currentNodeAddr
currentNodeAddr = nextNodeAddr

end if
end while

/* a leaf has been reached so save the results of the search */
searchResults->previousAddr = previousNodeAddr
searchResults->finalDirection = currentDirection
searchResults->finalNodeAddr = currentNodeAddr
searchResults->finalNode = gSecondarySearchTable[currentNodeAddr]
searchResults->leafAddr = nextNodeAddr
searchResults->leafSecondaryKey = gSecondarySearchKeys[nextNodeAddr]
searchResults->secondary = secondaryKey
searchResults->primary = primaryKey

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 81

/* test for case 3, at the root of the tree */
if (previousNodeAddr = currentNodeAddr) then

searchResults->isRoot = TRUE
end if

/* test for case 2, only a single branch in the tree*/
if ((searchResults->finalNode.leftBranch =

searchResults->finalNode.rightBranch)
&& (searchResults->finalNode.leftLeaf = LEAF)
&& (searchResults->finalNode.rightLeaf = LEAF)
&& (searchResults->isRoot) = TRUE)) then

searchResults->isSingleBranch = TRUE
end if

/* if the secondary key of the new VC matches the secondaryKey */
/* of the the VC Record leaf that the search terminated on, then */
/* the VC already exists.*/
if (secondaryKey = searchResults->leafSecondaryKey) then

searchResults->matched = TRUE
else /* find the most significant bit that differs between the keys */

searchResults->matched = FALSE
searchResults->newSelector = findMostSigDifferentBit(secondaryKey,

searchResults->leafSecondaryKey)
end if

return
}

6.7.6.4 searchTreeFindInsertionPoint

This routine traverses the search tree to find the appropriate location to insert a
new leaf. The location of the leaf is chosen so the selector values of the nodes
will follow decrementing values down the search tree levels.

In insertion Case 3 and Case 4, the searchTreeTraverse routine will traverse the
search tree past the location where the new leaf should be inserted. This routine
will be called in those cases, and the results of a preceding searchTreeTraverse
are used as the basis to start this search.

Inputs: searchResults : results from a previous search tree traversal
performed by searchTreeTraverse routine.
Provides the Search Tree information reuired to
start the new search.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 82

Outputs: insertResults : results from the insertion point Search Tree
traversal. Contains information about the
nodes surrounding the location where the new
leaf should be inserted.

Pseudocode:

searchTreeFindInsertionPoint(
sSEARCH_RESULTS *searchResults
sSEARCH_RESULTS *insertResults)

{
BOOLEAN foundInsertionPoint
UINT1 currentDirection
UINT4 previousNodeAddr
UINT4 currentNodeAddr
UINT4 nextNodeAddr
sSEC_SEARCH_ENTRY curentNode

searchResultsInitialize(insertResults) /*initialize result values*/

/* copy the search keys from the previous search */
insertResults->secondaryKey = searchResults->secondaryKey
insertResults->primaryKey = searchResults->primaryKey

/* start search at top of the tree */
currentNodeAddr = gPrimarySearchTable[insertResults->primaryKey]

/* initialize while loop variables */
previousNodeAddr = currentNodeAddr
foundInsertionPoint = FALSE

while (foundInsertionPoint = FALSE)
currentNode = gSecondarySearchTable[currentNodeAddr]

/* if the selctor value of the current node is less than the */
/* new selector value determined by the search results then */
/* the leaf should be inserted here so that the selector values */
/* follow decrementing values down the search tree levels */
if (currentNode.selector < searchResults.newSelector)

foundInsertionPoint = TRUE
else

/* continue the selector value comparison at the node at the */
/* next level in the tree */
currentDirection = searchGetDecisionBit(

insertResults->secondaryKey,

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 83

currentNode.selector)
if (currentDirection = DECISION_BIT_LEFT) then /* go left */

nextNodeAddr = currentNode.leftBranch
else /* go right */

nextNodeAddr = currentNode.rightBranch
end if

insertResults->previousDirection = currentDirection
previousNodeAddr = currentNodeAddr
currentNodeAddr = nextNodeAddr

end if
end while

/* the insertion point has been reached so save the results of this */
/* search */
insertResults->finalDirection = currentDirection
insertResults->newSelector = searchResults->newSelector
insertResults->finalNodeAddr = currentNodeAddr
insertResults->finalNode = currentNode

/* check if the search ended on the root node, (Case 3) */
if (insertResults->currentNodeAddr=insertResults->previousNodeAddr) then

insertResults->isRoot = TRUE
else

insertResults->isRoot = FALSE
end if

return
}

6.7.6.5 insertToEmptyTree - (Case 1)

This routine inserts an entry into an empty search tree. It will be called by
searchTreeInsert when insertion Case 1, as shown in Figure 21, occurs.

Inputs: vcra : VC Record Address that the final Secondary
Search Tree entry will point to.

secondaryKey : key associated with this vcra that will be
written to one of the Search Key Tables

Outputs: (none)

Pseudocode:

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 84

insertToEmptyTree (
UINT4 vcra
sSEC_SEARCH_KEY secondaryKey)

{
UINT4 rootNodeAddr
sSEC_SEARCH_ENTRY rootNode

/* get an address for the new secondary search entry */
/* Since this is a root node, be aware that it cannot be assigned */
/* address 0 since this is reserved for the empty tree condition. */
/* The function getFreeSecondaryAddress() is defined to never */
/* return address 0 to prevent this. */
rootNodeAddr = getFreeSecondaryAddress()

/* initialize new root node */
/* since only node and one leaf in the tree set both branches */
/* to point to the leaf */
rootNode.leftLeaf = LEAF
rootNode.leftBranch = vcra
rootNode.rightLeaf = LEAF
rootNode.rightBranch = vcra
/* now there is only one leaf so the selector bit has no effect */
/* It will be set once another leaf is added (Case 2) */
rootNode.selector = 0

/* write the root node to external SRAM and to shadow copy */
searchTreeWriteSecondaryEntry(rootNodeAddr, rootNode)
searchTreeWriteShadowSecondaryEntry(rootNodeAddr, rootNode)
/* save this search key to the microprocessor’s table */
gSecondarySearchKeys[vcra] = secondaryKey

/* write the primary pointer to shadow copy and to the external SRAM */
/* This write will update the search tree to include the root node */
/* and its leaf in a single atomic operation */
searchWritePrimaryEntry(primaryKey, rootNodeAddr)
searchWriteShadowPrimaryEntry(primaryKey, rootNodeAddr)

return
}

6.7.6.6 insertToSingleBranch - (Case 2)

This routine inserts a leaf into a search tree that only contains a single node and
a single leaf. It will be called by searchTreeInsert when insertion Case 2, as
shown in Figure 22, occurs.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 85

Inputs: vcra : VC Record Address that the final Secondary
Search Tree entry will point to.

searchResults : results from a search tree traversal. Contains
information about the nodes surrounding the
location where the leaf will be inserted.

secondaryKey : key associated with this vcra that will be
written to one of the Search Key Tables

Outputs: (none)

Pseudocode:

insertToSingleBranch (
UINT4 vcra
sSEARCH_RESULTS *searchResults
sSEC_SEARCH_KEY secondaryKey)

{
UINT1 decisionBit
sSEC_SEARCH_ENTRY modifiedRootNode
UINT4 modifiedRootNodeAddr

modifiedRootNode = searchResults->finalNode
modifiedRootNodeAddr = searchResults->finalNodeAddr

/* initialize a modified version of the current root node so that */
/* one of the branches now points to the new leaf. the other branch */
/* will still be pointing to the existing leaf */
modifiedRootNode.selector = searchResults->newSelector
decisionBit = searchGetDecisionBit(searchResults->secondaryKey,

modifiedRootNode.selector)
if (decisionBit = DECISION_BIT_LEFT) then /* put new leaf on the left */

modifiedRootNode.leftBranch = vcra
else /* put new leaf on the right */

modifiedRootNode.rightBranch = vcra
end if

/* overwrite current end node in the external SRAM and shadow copy */
/* This write will update the search tree to include the new leaf */
/* in a single atomic operation */
searchTreeWriteSecondaryEntry(modifiedRootNodeAddr, modifiedRootNode)
searchTreeWriteShadowSecondaryEntry(modifiedRootNodeAddr,

modifiedRootNode)
/* save this search key to the microprocessor’s table */
gSecondarySearchKeys[vcra] = secondaryKey

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 86

return
}

6.7.6.7 insertToRoot - (Case 3)

This routine inserts a new root at the top of a search tree and places the new
leaf under it. It will be called by searchTreeInsert when insertion Case 3, as
shown in Figure 23, occurs.

Inputs: vcra : VC Record Address that the final Secondary
Search Tree entry will point to.

searchResults : results from a search tree traversal. Contains
information about the nodes surrounding the
location where the leaf will be inserted.

secondaryKey : key associated with this vcra that will be
written to one of the Search Key Tables

Outputs: (none)

Pseudocode:

insertToRoot (
UINT4 vcra
sSEARCH_RESULTS *insertResults
sSEC_SEARCH_KEY secondaryKey)

{
UINT1 decisionBit
UINT4 newRootNodeAddr
sSEC_SEARCH_ENTRY newRootNode

/* initialize the new root node to point to the new leaf and to the */
/* previous root node */
newRootNode.selector = insertResults->newSelector
decisionBit = searchGetDecisionBit(insertResults->secondaryKey,

newRootNode.selector)
if (decisionBit = DECISION_BIT_LEFT) then /* put leaf on left */

newRootNode.leftLeaf = LEAF
newRootNode.leftBranch = vcra
newRootNode.rightLeaf = NOT_LEAF
newRootNode.rightBranch = insertResults->finalNodeAddress

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 87

else /* put leaf on right */
newRootNode.leftLeaf = NOT_LEAF
newRootNode.leftBranch = insertResults->finalNodeAddress
newRootNode.rightLeaf = LEAF
newRootNode.rightBranch = vcra

end if

/* write the new root node to the external SRAM and shadow copy */
searchTreeWriteSecondaryEntry(newRootNodeAddr, newRootNode)
searchTreeWriteShadowSecondaryEntry(newRootNodeAddr, newRootNode)
/* save this search key to the microprocessor’s table */
gSecondarySearchKeys[vcra] = secondaryKey

/* write the primary pointer to the shadow copy and the external SRAM */
/* This write will update the search tree to include the new root */
/* node and its leaf in a single atomic operation */
searchWritePrimaryEntry(insertResults->primaryKey, newRootNodeAddr)

return
}

6.7.6.8 insertToMiddleBranch - (Case 4)

This routine inserts a leaf into the middle of a search tree. It will be called by
searchTreeInsert when insertion Case 4, as shown in Figure 24 occurs.

Inputs: vcra : VC Record Address that the final Secondary
Search Tree entry will point to.

searchResults : results from a search tree traversal. Contains
information about the nodes surrounding the
location where the leaf will be inserted.

secondaryKey : key associated with this vcra that will be
written to one of the Search Key Tables

Outputs: (none)

Pseudocode:

insertToMiddleBranch (
UINT4 vcra
sSEARCH_RESULTS *insertResults
sSEC_SEARCH_KEY secondaryKey)

{

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 88

UINT1 decisionBit
sSEC_SEARCH_ENTRY newNode
UINT4 newNodeAddr
sSEC_SEARCH_ENTRY modifiedNode
UINT4 modifiedNodeAddr

newNodeAddr = getFreeSecondaryAddress()

/* initialize the new node to point to the new leaf and to the */
/* next node below it */
newNode.selector = insertResults.newSelector
decisionBit = searchGetDecisionBit(insertResults->secondaryKey,

newNode.selector)
if (decisionBit = DECISION_BIT_LEFT) then /* put leaf on left */

newRootNode.leftLeaf = LEAF
newRootNode.leftBranch = vcra
newRootNode.rightLeaf = NOT_LEAF
newRootNode.rightBranch = insertResults->finalNodeAddress

else /* put leaf on right */
newRootNode.leftLeaf = NOT_LEAF
newRootNode.leftBranch = insertResults->finalNodeAddress
newRootNode.rightLeaf = LEAF
newRootNode.rightBranch = vcra

end if

/* initialize the previous node in the table to point to the new */
/* node */
modifiedNode = insertResults->finalNode
modifiedNodeAddr = insertresults->finalNodeAddr

if (insertResults->previousDirection = DIRECTION_LEFT) then
/* Left path from the previous node was taken, so insert the */
/* new node below the previous node's left branch */
modifiedNode.leftBranch = newNodeAddr
modifiedNode.leftLeaf = NOT_LEAF

else
/* Right path from the previous node was taken, so insert the */
/* new node below the previous node's left branch */
modifiedNode.rightBranch = newNodeAddr
modifiedNode.rightLeaf = NOT_LEAF

end if

/* first write the new node to the shadow copy and external SRAM */
/* this will not affect the current tree structure */
searchTreeWriteSecondaryEntry(newNodeAddr, newNode)
searchTreeWriteShadowSecondaryEntry(newNodeAddr, newNode)
/* save this search key to the microprocessor’s table */

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 89

gSecondarySearchKeys[vcra] = secondaryKey

/* overwrite the modified node in the shadow copy and external SRAM */
/* This write will update the search tree to include the new node */
/* in a single atomic operation */
searchTreeWriteSecondaryEntry(modifiedNodeAddr, modifiedNodeAddr)
searchTreeWriteShadowSecondaryEntry(modifiedNodeAddr, modifiedNodeAddr)
/* save this search key to the microprocessor’s table */
gSecondarySearchKeys[vcra] = secondaryKey

return
}

6.7.6.9 insertToEndNode - (Case 5)

This routine inserts a leaf at the end of a search tree . It will be called by
searchTreeInsert when insertion Case 5, as shown in Figure 25, occurs.

Inputs: vcra : VC Record Address that the final Secondary
Search Tree entry will point to.

searchResults : results from a search tree traversal. Contains
information about the nodes surrounding the
location where the leaf will be inserted.

secondaryKey : key associated with this vcra that will be
written to one of the Search Key Tables

Outputs: (none)

Pseudocode:

insertToEndNode (
UINT4 vcra
sSEARCH_RESULTS *searchResults
sSEC_SEARCH_KEY secondaryKey)

{
UINT1 decisionBit
sSEC_SEARCH_ENTRY newEndNode
UINT4 newEndNodeAddr
sSEC_SEARCH_ENTRY modifiedNode
UINT4 modifiedNodeAddr

newEndNodeAddr = getFreeSecondaryAddress()

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 90

modifiedNodeAddr = searchResults->finalNodeAddr

/* initialize a modified version of the current end node so that */
/* the branch that pointed to the final leaf now points to the new */
/* end node */
modifiedNode = searchResults->finalNode
if (searchResults->finalDirection = SEARCH_DIRECTION_LEFT) then

/* put new node on the left */
modifiedNode.leftLeaf = NOT_LEAF
modifiedNode.leftBranch = newEndNodeAddr

else /* put new node on the right */
modifiedNode.rightLeaf = NOT_LEAF
modifiedNode.rightBranch = newEndNodeAddr

end if

/* initialize the new end node so that it points to the new leaf */
/* and to the leaf that the current end node points to */
newEndNode.selector = searchResults->newSelector
newEndNode.leftLeaf = LEAF
newEndNode.rightLeaf = LEAF
decisionBit = searchGetDecisionBit(searchResults->secondaryKey,

newEndNode.selector)
if (decisionBit = DECISION_BIT_LEFT) then

newEndNode.leftBranch = vcra
newEndNode.rightBranch = searchResults->leafAddress

else /* DECISION_BIT_RIGHT */
newEndNode.leftBranch = searchResults->leafAddress
newEndNode.rightBranch = vcra

end if

/* first write the new end node in the shadow copy and external SRAM */
/* this will not affect the current tree structure */
searchTreeWriteSecondaryEntry(newEndNodeAddr, newEndNode)
searchTreeWriteShadowSecondaryEntry(newEndNodeAddr, newEndNode)
/* save this search key to the microprocessor’s table */
gSecondarySearchKeys[vcra] = secondaryKey

/* overwrite current end node in the shadow copy and external SRAM */
/* This write will update the search tree to include the new end node */
/* in a single atomic operation */
searchTreeWriteSecondaryEntry(modifiedEndNodeAddr, modifiedNode)
searchTreeWriteShadowSecondaryEntry(modifiedEndNodeAddr, modifiedNode)
/* save this search key to the microprocessor’s table */
gSecondarySearchKeys[vcra] = secondaryKey

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 91

return
}

6.7.6.10 searchTreeRemove

This routine removes the entry from the search table associated with a given VC
Table Record. The Search Table is traversed to find the leaf entry, then the
appropriate removal routine is called based on the tree structure.

Inputs: routingWord : data structure containing all the VC’s
information that is required to construct the
Primary and Secondary Search Keys

Outputs: (none)

Pseudocode:

UINT1 searchTreeRemove (
sROUTING_WORD routingWord

{

sSEARCH_RESULTS *searchResults

primaryKey = constructPrimaryKey(routingWord)
secondaryKey = constructSecondaryKey(routingWord)

searchTreeTraverse(primaryKey, secondaryKey, searchResults)

if (searchResults->matched = FALSE) then
return ERROR_VC_NOT_EXIST

end if

if (searchresults->isRoot = FALSE) then
/* remove a node that is not the root node, (Case 4 and Case 5) */
removeEndNode(searchResults)

else /* the root node is involved, (Case 1, Case 2, and Case 3) */
if (searchResults->singleBranch = TRUE) then

/* Case 1 */
removeSingleBranch(searchResults)

else if (searchResults->finalNode.leftLeaf = LEAF)
and (searchResults->finalNode.rightLeaf = LEAF) then

/* Case 2 */
removeDoubleBranch(searchResults)

else /* Case 3 */

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 92

removeRootNode(searchResults)
end if

end if

return SUCCESS
}

6.7.6.11 removeSingleBranch - (Case 1)

This routine removes the leaf from a table that contains only a single node and a
single leaf. It will be called by searchTreeRemove when the mirror of insertion
Case 1, as shown in Figure 21, occurs.

Inputs: searchResults : results from a search tree traversal. Contains
information about the nodes surrounding the
the leaf that will be removed.

Outputs: (none)

Pseudocode:

removeSingleBranch (
sSEARCH_RESULTS *searchResults)

{

/* set the primary entry to all zeroes to indicate the tree */
/* for this primary key is empty */
searchWritePrimaryEntry(insertResults->primaryKey, 0)

/* mark this secondary search address as available for use */
releaseSecondaryAddress(searchResults->finalNodeAddr)

return
}

6.7.6.12 removeDoubleBranch - (Case 2)

This routine removes a leaf from a table that contains a single node and two
leaves. It will be called by searchTreeRemove when the mirror of insertion Case
2, as shown in Figure 22, occurs.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 93

Inputs: searchResults : results from a search tree traversal. Contains
information about the nodes surrounding the
the leaf that will be removed.

Outputs: (none)

Pseudocode:

removeDoubleBranch (
sSEARCH_RESULTS *searchResults)

{

UINT1 decisionBit
sSEC_SEARCH_ENTRY modifiedRootNode
UINT4 modifiedRootNodeAddr

/* initialize a modified version of the current root node so that */
/* both of the branches now points to single remaining leaf. */

modifiedRootNode = searchResults->finalNode
modifiedRootNodeAddr = searchResults->finalNodeAddr

/* now there will be only one leaf with both branches pointing to */
/* it so the selector bit has no effect */
modifiedRootNode.selector = 0

if (searchResults->finalDirection = DIRECTION_LEFT) then
/* remove left leaf - left now points to same as right */
modifiedRootNode.leftBranch = modifiedRootNode.rightBranch

else
/* remove right leaf - right now points to same as left */
modifiedRootNode.rightBranch = modifiedRootNode.leftBranch

end if

/* overwrite the modified root node in the shadow copy and external */
/* SRAM. This write will update the search tree to remove the old */
/* leaf in a single atomic operation */
searchTreeWriteSecondaryEntry(modifiedNodeAddr, modifiedNodeAddr)
searchTreeWriteShadowSecondaryEntry(modifiedNodeAddr, modifiedNodeAddr)
/* save this search key to the microprocessor’s table */
gSecondarySearchKeys[vcra] = secondaryKey

return
}

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 94

6.7.6.13 removeRootNode - (Case 3)

This routine removes a leaf from a root node that has the leaf on one branch and
a node on its other branch. It will be called by searchTreeRemove when the
mirror of insertion Case 3, as shown in Figure 23, occurs.

Inputs: searchResults : results from a search tree traversal. Contains
information about the nodes surrounding the
the leaf that will be removed.

Outputs: (none)

Pseudocode:

removeRootNode (
sSEARCH_RESULTS *searchResults)

{

UINT1 decisionBit
UINT4 newRootNodeAddr

/* make the second entry in the tree the new root node */
/* A root node is assigned here, so be aware that it cannot be */
/* have address 0 since this is reserved for empty tree condition. */
/* However, since address 0 is never assigned by the */
/* getFreeSecondaryAddress() function this will not happen here */
if searchResults->finalDirection = DIRECTION_LEFT then

newRootNodeAddr = searchResults->finalNode.rightBranch
else

newRootNodeAddr = searchResults->finalNode.leftBranch
end if

/* overwrite primary entry in the shadow copy and external SRAM */
/* This write will update the search tree to remove the old root */
/* in a single atomic operation */
searchWritePrimaryEntry(insertResults->primaryKey, newRootNodeAddr)

/* mark the secondary search address of the old root node as */
/* available for use */
releaseSecondaryAddress(searchResults->finalNodeAddr)

return
}

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 95

6.7.6.14 removeEndNode - (Case 4 and Case 5)

This routine removes a leaf from any node that is not the root node. It will be
called by searchTreeRemove when the mirror of insertion Case 3 or Case 4, as
shown in Figure 24 and Figure 25, occurs.

Inputs: searchResults : results from a search tree traversal. Contains
information about the nodes surrounding the
the leaf that will be removed.

Outputs: (none)

Pseudocode:

searchTreeRemoveEndNode (
sSEARCH_RESULTS *searchResults)

{

UINT1 decisionBit
sSEC_SEARCH_ENTRY modifiedPrevNode
UINT4 modifiedPrevNodeAddr
sSEC_SEARCH_ENTRY removedNode
UINT4 removedNodeAddr

modifiedGrandParentNodeAddr = searchResults->prevAddr
modifiedGrandParentNode =

gSecondarySearchTable[modifiedGrandParentNodeAddr]

removedParentNode = searchResults->finalNode
removedParentNodeAddr = searchResults->finalNodeAddr

/* the parent node of the removed leaf has one branch pointing */
/* to the leaf that will be removed and another branch pointing */
/* to the rest of the search tree below it. The parent node will */
/* be removed so the grandparent node must take over the pointer */
/* to the rest of the search tree */
if searchResults->prevDirection = DIRECTION_LEFT then

modifiedGrandParentNode.leftBranch = removedParentNode.leftBranch
modifiedGrandParentNode.leftLeaf = removedParentNode.leftLeaf

else
modifiedGrandParentNode.rightBranch = removedParentNode.rightBranch
modifiedGrandParentNode.rightLeaf = removedParentNode.rightLeaf

end if

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 96

/* overwrite grandparent node in the shadow copy and external SRAM */
/* This write will update the search tree to remove the old parent */
/* node and the old leaf in a single atomic operation */
searchWriteSecondaryEntry(modifiedGrandParentNode,

modifiedGrandParentNodeAddr)

/* mark the secondary search address of the old parent node as */
/* available for use */
releaseSecondaryAddress(removedParentNodeAddr)

return
}

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 97

6.8 Microprocessor Cell Interface Communicating

This section is a guide to programming the routines to communicate with the
Input Microprocessor Cell Interface (IMCIF) and the Output Microprocessor Cell
Interface (OMCIF). The application program will run these routines intermittently
to insert cells into the cell stream and to respond to cell arrivals at the OMCIF.

The ATLAS-3200 has a one cell buffer on the IMCIF and a sixteen cell buffer on
the OMCIF (see Figure 4) that are accessed through the indirect registers listed
in Table 30. The reading and writing algorithms using these registers are
discussed in section 7.10 MCIF Interfacing.

Table 30 - Registers for MCIF Indirect Accessing

Register Description

Microprocessor Cell Interface Control and
Status Register (0x020)

Indirect data read/write control bits.

Microprocessor Cell Data Register (0x021) Indirect data register.

6.8.1 Reading Cells

Cells will be routed to the OMCIF depending on the type of cell and routing
configuration bits. See Section 6.11 OAM Cell Processing for detailed
information on how the cell routing configuration bits affect routing to the OMCIF.
The reason that a cell was routed to the OMCIF can be determined by reading
the causation word that is appended to cells if the Cell_Info_to_UP bit in the Cell
Processor Configuration Register (0x100) is set.

The OMCIF has a 16 cell FIFO to buffer received cells. There are three ways to
determine when there are cells available in the OMCIF:

• Poll the EXTCA bit in the Microprocessor Cell Interface Control and Status
Register (0x020). When EXTCA is logic 1 there is at least one full cell in the
FIFO.

• Use the UP_DMAREQ signal. This signal is asserted whenever EXTCA is
asserted. The microprocessor can poll it or generate interrupts from it. The
polarity of this signal is set by the DMAREQINV signal in the Microprocessor
Cell Interface Control and Status Register (0x020).

• Use the INTB signal. Enable this interrupt signal for the OMCIF by setting the
UPCAE bit in the Master Interrupt Enable #1 Register (0x004). The UPCAI bit

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 98

in the Master Interrupt Status #1 Register (0x002) is set whenever EXTCA
goes high. See Section 6.10 Interrupt Handling for interrupt details.

Use the method that is most suitable for the application.

If a cell arrives at the OMCIF when the FIFO is full, the newly arrived cell will be
discarded. This event triggers the UPOVRI bit in the Master Interrupt Status #1
Register (0x002) to be set. If this interrupt is enabled with the UPOVRE bit in the
Master Interrupt Enable #1 Register (0x004) then the INTB signal will be
asserted.

Note: since there is no signal that indicates an almost full FIFO, the software
should attempt to maintain an empty FIFO to prevent cell loss.

See section 7.10.1 for the algorithm to read cells from the OMCIF using the
indirect registers.

6.8.2 Writing Cells

The IMCIF allows the microprocessor to insert cells into a cell stream. The cells
can be inserted either before or after the Cell Processor depending on the value
of the PROC_CELL bit in the Microprocessor Cell Interface Control and Status
Register (0x020). If they are inserted before the Cell Processor then they are
treated as if they were coming from the Input Cell Interface (ICIF). If they are
inserted in the cell stream after the Cell Processor they will not be searched,
processed, or counted and will be output directly to the specified PHY.

Inserting cells into a cell stream is application specific so can be done as
required. There are two major considerations that should be noted however:

• Cells should not be inserted too frequently to the IMCIF. The Cell Processor
gives an equal priority to cells received from the ICIF and cells received from
the IMCIF therefor it is the responsibility of the software to pace cell insertion
on the IMCIF.

• Cells inserted with PROC_CELL = 1 it will be routed as if they came from the
ICIF and may be routed to the OMCIF. For example if a cell is inserted to a
VC that has the VC_to_UP set in its VC Table Record Configuration field the
cell will arrive back at the OMCIF. The OMCIF has a 16 cell FIFO that should
not be allowed to overflow to prevent cell loss. Cells that are inserted with
PROC_CELL = 0 will never be routed to the OMCIF.

See section 7.10.2 for the algorithm to write cells to the IMCIF using the indirect
registers.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 99

6.9 FIFO Managing

The ATLAS-3200 provides two FIFOs that the microprocessor can optionally use
to efficiently monitor the ATLAS-3200’s operating status. The Change of State
(COS) FIFO monitors all active VC’s and records any changes in their states due
to alarm conditions. The Count Rollover (CRO) FIFO monitors the saturating
counters in the Performance Management and Cell Counting fields and records
changes in the most significant bits. These two FIFO’s each have a background
process that continually scans the ATLAS-3200 for conditions that will trigger an
entry. The use of these FIFOs relieves the microprocessor from having to poll a
large number of fields in the data structures. If the microprocessor opts not to
use these FIFOs then it is responsible for periodically reading each field that
need to be monitored. This method is only feasible if there are a small number
of connections in use.

The following sections discuss the operation and configuration of the COS FIFO
and the CRO FIFO.

6.9.1 Change of State FIFO

The Change of State (COS) FIFO allows efficient monitoring of the connection
states of all the active VCs. The state of a VC is stored in the Status field of its
VC Table Record. The COS FIFO records changes that occur to the bits in the
Status field. The status bits are divided into three types (DRAM CRC error,
OAM Failure, and OAM Alarms) that can be selectively enabled for generating
COS entries. The configuration bits described in Table 32 control which type of
status bits cause entries to the COS FIFO.

The COS FIFO is 256 entries deep and maskable interrupts are provided to
indicate when the FIFO is not empty, half full and full. The COS interrupt
configuration bits are described in Table 31, and Section 6.10 Interrupt Handling
contains further interrupt information.

Access to the FIFO entries are provided through the indirect access register
listed in Table 33. See Section 7.11 for COS FIFO Interfacing algorithm.

To take advantage of this feature the microprocessor can maintain a shadow
copy of each VC’s status field in its own memory. The shadow copy can then be
quickly read by all routines that need to reference a VC’s status. When a status
bit on the ATLAS-3200 changes, a entry will be sent to the COS FIFO and an
interrupt will be caused if one of the interrupt conditions is met. The
microprocessor can service the interrupts and read the COS FIFO entries then
update its shadow copy. To ensure that the shadow copies are accurate the
microprocessor should attempt to read the COS FIFO as frequently as possible,

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 100

and would ideally keep it empty. If the COS FIFO is not used then it is the
responsibility of the software to poll each active VC Table Record to monitor the
status bits.

Whether or not the COS FIFO is used, it is the responsibility of the management
software to ensure that the status of each VC is read often enough so that
changes in state monitoring remains compliant with the Bellcore and ITU
standards.

Table 31 - Register Bits for COS FIFO Interrupts

Bit Name Register Description

COSI Master Interrupt
Status #1 (0x002)

Interrupt status flag indicating COS
FIFO is not empty.

XCOSI Master Interrupt
Status #1 (0x002)

Interrupt status flag indicating COS
FIFO is half full.

COSFULLI Master Interrupt
Status #1 (0x002)

Interrupt status flag indicating COS
FIFO is full. The COS detection
background process is halted.

COSE Master Interrupt
Enable #1 (0x004)

Enable COSI interrupt.

XCOSE Master Interrupt
Enable #1 (0x004)

Enable XFULLI interrupt.

COSFULLE Master Interrupt
Enable #1 (0x004)

Enable COSFULLI interrupt.

Table 32 - Register Bits for COS FIFO Configuration

Bit Name Register or Field Description

COS_EN Cell Processor
Configuration
(0x100)

Enables the COS FIFO. If disabled
no entries will be made to the COS
FIFO. This bit supercedes all other
COS bits.

COS_DRAM_ERR_
EN

Cell Processor
Configuration
(0x100)

Controls the generation of COS
FIFO entries caused by changes in
the DRAM_CRC_Err bit in the VC
Table Record, Status field. If set to
logic 1 DRAM_CRC_Err changes
will generate entries.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 101

Bit Name Register or Field Description

These control the generation of
COS FIFO entries caused by
changes in the OAM bits in the VC
Table Record, Status field. Their
actions are as follows:
00 : Only the changes to the OAM

alarm bits (CC, AIS, and RDI
alarms) are sent to the COS
FIFO. Changes to
OAM_Failure bit are not sent.

01 : No OAM change of states
sent to the COS FIFO.

10 : Changes to all OAM bits sent
to the COS FIFO.

[COS_Fail_En,
COS_Fail_Only]

Cell Processor
Configuration
(0x100)

11 : Only the changes to the
OAM_Failure bit are sent to
the COS FIFO. Changes to
OAM alarm bits not sent. Use
this if the software has no
need to know about changes
of connection state unless
they rise to the level of a
service failure (i.e. an OAM
fault that persists for at least
4.5 +/- 0.5 seconds)

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 102

Bit Name Register or Field Description

Enables COS entries on a per-VC
basis. .
0 : Changes of bits in the Status

field of this VC will not cause
entries to the COS FIFO

COS_FIFO_enable VC Table Record,
Configuration Field

1 : Changes of the Status field
bits selected by
[COS_DRAM_ERR_EN,
COS_Fail_En,
COS_Fail_Only], will cause
entries to the COS FIFO for
this VC.

Table 33 - Registers for COS FIFO Interfacing

Register Address Description

VC Table Change of Connection
State FIFO Status

0x190 Status bits

VC Table Change of Connection
State FIFO Data

0x191 Indirect data register

6.9.2 Count Rollover FIFO

The Count Rollover (CRO) FIFO allows the microprocessor to efficiently monitor
the values of the internal counters and prevents information loss due to counter
saturation. The CRO monitors selected count fields in VC Table Records, PM
Table Records, Per-PHY Policing RAM Tables, and Per-PHY Counts. When the
most significant bit (MSB) of a CRO enabled counter changes from 0 to 1, an
entry will be entered into the CRO FIFO and the MSB will be reset to 0. The
configuration bits described in Table 34 control which counters are enabled to
cause entries to the CRO FIFO. Counts that are disabled from causing CRO
FIFO entries will operate as normal saturating counters and it is the responsibility
of the microprocessor to poll them frequently enough to prevent saturation.
Counts that are designed to roll over in normal operation do not generate CRO
FIFO entries.

The CRO FIFO is 256 entries deep and maskable interrupts are provided to
indicate when the FIFO is not empty, half full and full. The CRO interrupt
configuration bits are described in Table 35, and Section 6.10 Interrupt Handling
contains further interrupt information.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 103

Access to the FIFO entries is provided through the indirect access registers listed
in Table 36. See Section 7.12 for the CRO FIFO Interfacing algorithm.

The intention is that the microprocessor uses these rollover entries to maintain
the most-significant bits of the counters in its own memory. The least-significant
bits can be accessed by the microprocessor through the indirect access registers
whenever precise counts are needed. To ensure that accurate values are
maintained and to prevent the FIFO from filling, the microprocessor should
attempt to read the COS FIFO as frequently as possible, and should ideally keep
it empty. If the Count Rollover FIFO is full, the MSB of the counts will remain set
until such time as it can make an entry in the FIFO. The counts continue
counting until they saturate. If the CRO FIFO is filling too quickly, the rate of
CRO entries can be reduced by setting the Sat_Fast_PM_Counts bit in the Cell
Processor Configuration Register (0x100). This prevents the counts in the
Performance Management Table that can increment very quickly from generating
Count Rollover FIFO entries, but will also likely result in these counts saturating
and loss of information.

Table 34 - Register Bits for CRO FIFO Configuration

Bit Name Register or Field Description

CRO_FIFO_EN Cell Processor
Configuration
(0x100)

Globally enables the CRO FIFO. If
disabled no entries will be made to
the CRO FIFO. All related count
fields operate as normal saturating
counters. This bit supercedes all
other CRO bits.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 104

Bit Name Register or Field Description

Sat_Fast_PM_Coun
ts

Cell Processor
Configuration
(0x100)

Globally supercedes the PM
Rollover_FIFO_EN bit for the fields
that may saturate frequently.
Disables, globally, the following
fields in all PM Table Records from
generating CRO FIFO entries:

• Fwd Errors

• Bwd Errors

• Bwd Lost Fwd PM Cells

• Bwd Lost Bwd PM Cells

• Fwd Lost Fwd PM Cells.
Set this if it is acceptable to let
these fields saturate and it is
desired to reduce the rate of entries
into the CRO FIFO. If this is not set
then the microprocessor must read
the CRO FIFO frequently.

Rollover_FIFO_ena
ble

VC Table Record,
Configuration Field

Enables, per-VC, the following
fields from the VC Table Record to
generate CRO FIFO entries:

• Count 1

• Count 2

• Alternate Count 1

• Alternate Count 2
Policing Rollover
FIFO enable

VC Table Record,
Policing
Configuration Field

Enables, per-VC, the following
fields from the VC Table Record to
generate CRO FIFO entries:

• Non-Compliant Count 1

• Non-Compliant Count 2

• Non-Compliant Count 3

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 105

Bit Name Register or Field Description

PHY
Rollover_FIFO_EN

Per-PHY Counter
Configuration
(0x1A0)

Enables, globally, the following
fields from the Per-PHY Counts to
generate CRO FIFO entries:

• Per-PHY CLP0 Cell Count

• Per PHY CLP1 Cell Count

• Per PHY Valid RM Cell Count

• Per PHY Valid OAM Cell Count

• Per PHY Errored OAM/RM Cell
Count

• Per PHY Invalid VPI/VCI/PTI
Cell Count

• Per-PHY EFCI/Non-Zero GFC
Cell Count

• Per-PHY Timed-Out Cell Count
PHY Policing
Rollover FIFO EN

Per-PHY Policing
RAM Table

Enables, per-PHY, the following
fields from the Per-PHY Policing
RAM to generate CRO FIFO
entries:

• Phy Non-Compliant1

• Phy Non-Compliant2

• Phy Non-Compliant3
PM
Rollover_FIFO_EN

PM Table Record,
Configuration Field

Enables, per PM Table Record, the
following fields from the PM Table
Record to generate CRO FIFO
entries:

• all fields in Rows 3,4,5,6, and 7,
except FwdSECBC and Bwd
SECBC

Note that if the
Sat_Fast_PM_Counts bit is set then
it takes precedence over this bit
and five of the fields will be disabled
from generating entries.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 106

Table 35 - Register Bits for CRO FIFO Interrupts

Bit Name Register or Field Description

CROI Master Interrupt
Status #1 (0x002)

Interrupt status flag indicating CRO
FIFO is not empty.

XCROI Master Interrupt
Status #1 (0x002)

Interrupt status flag indicating CRO
FIFO is half full.

CROFULLI Master Interrupt
Status #1 (0x002)

Interrupt status flag indicating CRO
FIFO is full. The CRO detection
background process is halted.

CROE Master Interrupt
Enable #1 (0x004)

Enable CROI interrupt.

XCROE Master Interrupt
Enable #1 (0x004)

Enable XFULLI interrupt.

CROFULLE Master Interrupt
Enable #1 (0x004)

Enable CROFULLI interrupt.

Table 36 - Registers for CRO FIFO Interfacing

Register Address Description

VC Table Count Rollover FIFO Status 0x198 Status bits
VC Table Count Rollover FIFO Data 0x199 Indirect data register

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 107

6.10 Interrupt Handling

This section contains a description of the interrupt hierarchy on the ATLAS-3200.
This can be used as guide when programming the interrupt service routines.

The ATLAS-3200 contains two Master Interrupt Status registers and two
corresponding Master Interrupt Enable registers. There are other interrupt
related bits contained in various registers and data structures. The relationships
between all the interrupt related bits are shown in Figure 26 and Figure 27.

Note that all the interrupts in the Master Interrupt Status #2 register will be
disabled if the REG3E bit in the Master Interrupt Enable #2 register is set to logic
0.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 108

Figure 26 - Interrupt Hierarchy, Interrupt Status #1 Reg.

REG3I
OBCIFFULLI

OBOVFLI
IBCIFFULLI

IBPRTYI

IBSOCI
UPCAI

UPOVRI
INSRDYI
Reserved
SlowBGI

DeadPHYI
CROI

CROFULLI
COSI

XCOSI
COSFULLI
PHYPOLI

POLI
OAM_FAILI
END_RDII
SEG_RDII
END_AISI
SEG_AISI
END_CCI
SEG_CCI

SRCH_ERRI
OAM_ERRI

INVAL_PTI_VCII
UNPROV_I

IBOVFLI

XCROI

Master Interrupt Status #1
(0x002)

Microprocessor Cell Interface Control and
Status (0x020)

EXTCA
INSRDY

VC RECORD TABLE

FM_Interrupt_Enable

OAM Configuration Field

DRAM_CRC_Err

OAM_Failure

Status Field

AIS_end_to_end alarm
AIS_segment alarm

RDI_end_to_end alarm
RDI_segment alarm

CC_end_to_end alarm
CC_segment alarm

Inoperative PHY Declaration Period
and Indications (0x109)

DEADPHYTO[15:0]*

* disabled when DEADPHY[15:0] =
0x0000, otherwise value of
DEADPHY specifies timeout period

PHY
PHY has not accepted
avaiable cells for
timeout period.

UP_INTB

DRAM_CRC_Err

(to figure Interrupt Hierarchy,
Interrupt Status #2)

Per-PHY Counter Configuration (0x1A0)
Cnt_Undef_OAM

OAM cell with an incorrect
OAM Type, Function Type
or Error Detection Code
field (CRC-10) received

REG3I

External interrupt signal to
microprocessor

OBCIFFULLE
OBOVFLE

IBCIFFULLE
IBPRTYE

IBSOCE
UPCAE

UPOVRE
INSRDYE
Reserved
SlowBGE

DeadPHYE
CROE

CROFULLE
COSE

XCOSE
COSFULLE
PHYPOLE

POLE
OAM_FAILE
END_RDIE
SEG_RDIE
END_AISE
SEG_AISE
END_CCE
SEG_CCE

SRCH_ERRE
OAM_ERRE

INVAL_PTI_VCIE
UNPROV_E

IBOVFLE

XCROE

Master Interrupt Enable #1
(0x004)

(from figure Interrupt Hierarchy,
Interrupt Status #2)

LEGEND

COSI

COSE

REG3I

Interrupt source register bit. When
value is logic 1 interrupt is asserted.

Interrupt enable register bit. When
value is logic 0 interrupt is disabled,
otherwise enabled.

Signal off the page

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 109

Figure 27 - Interrupt Hierarchy, Interrupt Status #2 Reg.

Reserved
Bypass_SDQ_I
Output_SDQ_I

Tx_Link_I
Rx_PHY_I

Tx_PHY_I
Rx_Link_I
Reserved

OCLKDLLERRI
ICLKDLLERRI

SYSCLKDLLERRI
Reserved
Reserved

DRAM_ERRI
SPRTYI[7]

Input_SDQ_I

Reserved

Master Interrupt Status #2
(0x003)

SPRTYI[6]
SPRTYI[5]
SPRTYI[4]
SPRTYI[3]
SPRTYI[2]
SPRTYI[1]
SPRTYI[0]

RDIFFERRI
RERRI

PARERRI
FIFOTHI

RDTFERRE
RERRE

PARERRE
FIFOTHE

RxL Interrupt Enable (0x201) RxL Interrupt (0x202)

TDTFERRI
TPARERRI
RUNTCELLI

TDTFERRE
TPARARRE
RUNTCELLE

TxP Interrupt Enable (0x222) TxP Interrupt (0x221)

UNDI
EOPI
SOPI
OFLI

UNDE
EOPE
SOPE
OFLE

Bypass SDQ Interrupts (0x2C1) Bypass SDQ Interrupts (0x2C1)

UNDE
EOPE
SOPE
OFLE

Output SDQ Interrupts (0x2A1)

UNDE
EOPE
SOPE
OFLE

Input SDQ Interrupts (0x241)

TERRI
TCAERRI

TERRE
TCAERRE

TxL Interrupt Enable (0x281) TxL Interrupt (0x282)

RUNTCELLIRUNTCELLE
RxP Interrupt Enable (0x262) RxP Interrupt (0x261)

UNDI
EOPI
SOPI
OFLI

Output SDQ Interrupts (0x2A1)

UNDI
EOPI
SOPI
OFLI

Input SDQ Interrupts (0x241)

Reserved
Bypass_SDQ_E
Output_SDQ_E

Tx_Link_E
Rx_PHY_E

Tx_PHY_E
Rx_Link_E
Reserved

OCLKDLLERRE
ICLKDLLERRE

SYSCLKDLLERRE
Reserved
Reserved

DRAM_ERRE
SPRTYE[7]

Input_SDQ_E

Reserved

SPRTYE[6]
SPRTYE[5]
SPRTYE[4]
SPRTYE[3]
SPRTYE[2]
SPRTYE[1]
SPRTYE[0]

Master Interrupt Enable #2
(0x005)

DRAM_CRC_Err

REG3I

(from figure Interrupt Hierarchy, Interrupt Status #1)

(to figure Interrupt Hierarchy, Interrupt Status #1)

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 110

6.11 OAM Cell Processing

Operations and Maintenance (OAM) cell processing in the ATLAS-3200 is
configured by global settings located in direct registers, by per-VC settings
located in each VC Table Record, and by per-PM Session settings located in
each PM Table Record. The global settings will typically be configured during
ATLAS-3200 initialization, and the other settings will typically be configured as
VCs or PM sessions are created.

The following sections describe the support provided by the ATLAS-3200 and the
related configuration settings for each type of OAM cell.

For detailed information on OAM cell flow through the cell processor see Section
0, and for a general OAM reference see Appendix A: OAM Cell Descriptions.

6.11.1 General OAM Settings

The ATLAS-3200 contains some general OAM settings that are not specific to a
certain OAM type. The settings listed in Table 37 configure general OAM
operation for each VC. The settings listed in Table 38 configure general OAM
operation for the all connections on the ATLAS-3200.

Table 37 - Per-VC General OAM Settings

Field in VC Table
Record

Bit Name Description

OAM Configuration Generated OAM
Defect Type [7:0]

Specifies the value of the
‘Defect Type’ field that is
inserted into generated OAM
cells. See Figure 49 for the
location of the ‘Defect Type’
field within OAM cells.

OAM Configuration F4toF5OAM Controls whether or not an F5
(VCC) connection will send AIS
or RDI cells due to AIS cells
arriving on the associated F4
(VPC).
This bit is only valid if this is a
VCC. If this is a VPC this bit
will have no effect.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 111

Field in VC Table
Record

Bit Name Description

OAM Configuration Segment Flow Set this to 1 if the connection is
part of a defined segment and
is not a segment end-point.

OAM Configuration Segment_End_Point Set this to 1 if the connection is
a segment termination point.

OAM Configuration End_to_End_Point Set this to 1 if the connection is
an end-to-end termination
point.

Segment Received
Defect Type

[7:0]

Segment Received
Defect Location

[127:0]

ETE Received Defect
Type

[7:0]

End-to-End Received
Defect Location

[127:0]

When the ATLAS terminates an
AIS cell, the defect location and
type are extracted and placed
in these fields. This information
may be used to determine the
location and nature of the fault.
Additionally, the information is
used for the defect location and
type in RDI cells generated by
the ATLAS using the AUTORDI
function.

Table 38 - Global General OAM Settings

Register Bit Name Description

Cell Processor
Configuration (0x100)

AUTO_AIS Set this bit to enable automatic
generation of AIS cells while in
a Continuity alarm state.
The AIS cells are inserted on a
per-VC basis depending on
each VC’s CC_AIS_RDI bit.

Cell Processor Routing
Configuration (0x101)

CRC10TOUP

Cell Processor Routing
Configuration (0x101)

DROPCRCEOAM

Cell Processor Routing
Configuration (0x101)

DROPCRCERM

Controls routing of OAM and
RM cells that fail CRC check.
See Section 6.12 Cell Routing
for details.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 112

Register Bit Name Description

The 0.5 second clock is the
clock that triggers background
processing for some of the
OAM functions, such as AIS,
RDI and CC cell generation.
This bit specifies whether the
source is an internal or
external cloack source.
0 : Background processing

triggered on the rising
edge of the external
HALFSECCLK input

Cell Processor
Configuration (0x100)

GEN_HALFSECCLK

1 : Background processing
triggered triggered from
0.5 second clock derived
from SYSCLK, which is
assumed to be 125 MHz

6.11.2 Fault Management Cell Processing

Fault Management OAM cells consist of Alarm Indication Signal (AIS), Remote
Defect Indication (RDI), Continuity Check (CC), and Loopback (LB) cells.

The ATLAS-3200 supports cell generation, termination, and monitoring on a per-
connection basis for segment and end-to-end F4 and F5 AIS, RDI and CC cells.
For LB cells, support is provided for address identification, termination, and
loopback on a per-connection basis.

The settings listed in Table 39 configure the per-VC Fault Management OAM
operation. The settings listed in Table 40 configure the global Fault Mangement
OAM operation that affects all connections on the ATLAS-3200.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 113

Table 39 - Per-VC, Fault Management Settings

Field Bit Name Description

OAM
Configuration

Send_AIS_segment

OAM
Configuration

Send_AIS_end_to_end

OAM
Configuration

Send_RDI_segment

OAM
Configuration

Send_RDI_end_to_end

Set these bits to send segment or
end-to-end AIS or RDI cells. The
cells will be sent once per second
until the appropriate bit is turned
off. Send_RDI is not necessary if
the AUTORDI function is enabled.
Send_AIS would normally be used
at non-end points to indicate
failures downstream.
The Generated_Defect_Type[7:0]
field in the VC table is used for the
defect type, and the Defect
Location register fields are used
for the defect location.

OAM
Configuration

CC_Activate_Segment

OAM
Configuration

CC_Activate_End_to_End

Enables Continuity Checking on
segment and end to end flows.
These bits enable the genereation
of segement and user CC cells.
The conditions for generating the
cells depend on the setting of the
bit ForceCC.
If ForceCC is logic 0 then CC cells
will be generated if no user cells
arrive over a 1.0 second interval.
If ForceCC is set to logic 1 then
CC cells will be generated every
1.0 seconds regardless of user cell
traffic.

OAM
Configuration

FM_interrupt_enable This bit enables the generation of
segment and end-to-end AIS, RDI
Continuity Check, and OAM
Failure alarm interrupts. If this bit
is logic 1, the ATLAS-3200 will
assert the interrupts, as required,
regardless of whether or not the
ATLAS-3200 is a connection end-
point (segment or end-to-end) for
the connection. This bit would
typically be programmed to logic 1

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 114

Field Bit Name Description
at segment or end-to-end-points
only.
See Section 6.10 Interrupt
Handling for further interrupt detail.

OAM
Configuration

AUTO_RDI Set this bit to automatically
generate RDI cells while in AIS or
CC Alarm.

OAM
Configuration

CC_AIS_RDI Enables AIS or RDI cells to be
generated at one second intervals
upon the declaration of a
Continuity Alarm.
The global configuration bit
AUTO_AIS supercedes this bit, so
AIS will not be generated in
AUTO_AIS is logic 0.

Table 40 - Global Fault Management Settings

Register Bit Name Description

Cell Processor
Configuration
(0x100)

F4SAISF5EAIS When this bit is logic 1, an end-to-end
VC-AIS cell will be generated when a
segment VPC-AIS cell is terminated at a
VPC segment end-point.

Cell Processor
Configuration
(0x100)

F4SAISF5ERDI When this bit is logic 1, an end-to-end
VC-RDI cell will be generated when a
segment VPC-AIS cell is terminated at a
VPC segment end-point, and the VCC
is also an end-to-end point.

Cell Processor
Configuration
(0x100)

F4EAISF5EAIS When this bit is logic 1, an end-to-end
VC-AIS cell will be generated when an
end-to-end VPC-AIS cell is terminated
at a VPC end-to-end point, and an
associated VCC segment end-point is
switched from that VPC.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 115

Cell Processor
Configuration
(0x100)

F4EAISF5SRDI When this bit is logic 1, a segment VC-
RDI cell will be generated when an end-
to-end VPC-AIS cell is terminated at a
VPC end-to-end point and an
associated VCC segment end-point is
switched from that VPC.
This controls the mode of operation of
continuity checking.
0 : CC cells are inserted only in

periods of low user bandwidth.

Cell Processor
Configuration
(0x100)

ForceCC

1 : CC cells are inserted regardless of
user bandwidth at a rate of once
per second.
The CC cells are inserted on a per-
VC basis depending on each VC’s
CC_Activate_Segment or
CC_Activate_End_to_End settings.

Cell Processor
Routing
Configuration
(0x101)

LBtoOCIF

Cell Processor
Routing
Configuration
(0x101)

RTD_LB_TO_U
P_AT_END

Control LB cell routing. See Section
6.12 Cell Routing for details.

OAM Defect
Location
(0x151, 0x152,
0x153, 0x154)

DL[128:0] The defect location is inserted into non-
automatic (ie, not as a result of
AUTORDI) cell generation. The setting
of these registers is system specific. It
is expected that this would be set to
some unique value within the network.

Per-PHY AIS Cell
Generation
Control
(0x155, 0x156)

AIS[47:0] Enables the generation of AIS cells,
once per second, by all VC’s on a given
PHY. This is enabled on a per-PHY
basis and supercedes all other AIS
configuration bits.
PHY on which this is disabled will
generate AIS cells as normal.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 116

Per-PHY RDI Cell
Generation
Control
(0x157, 0x158)

RDI[47:0] Enables the generation of RDI cells,
once per second, by all VC’s on a given
PHY. This is enabled on a per-PHY
basis and supercedes all other RDI
configuration bits.
PHY on which this is disabled will
generate RDI cells as normal.

OAM Loopback
Location ID Octets
(0x160, 0x161,
0x162, 0x163)

LLID[128:0] The loopback location ID that identifies
this device in a network, to determine if
arriving loopback cells should be
processsed here. If a loopback cell
carries a loopback Id that matches this
one it may be looped back (Parent LB
cell) or terminated (Return LB cell).
See Section 6.12 Cell Routing for
detailed LB cell flow information.

6.11.3 PM Cell Processing

The ATLAS-3200 supports highly configurable PM statistics maintenance. There
are 512 individually configurable PM Table Records contained in two banks of
internal PM RAM. The PM Table Records configure the PM operation and store
performance information collected from received PM cells.

Each VC can link to two PM Table Records. Each VC Linkage Table Record
contains two pointers that allow one PM Table Record from each bank to be
addressed. The two PM Table Records can be used to perform simultaneous
sinking and sourcing of a PM flow, simultaneous F4 and F5 PM flows, etc..
Multiple VC’s can be linked to a single PM Table Record, and a VC can link or
unlink from a PM Table Record without interrupting its operation.

The PM Table Records, however, do not track which VC’s are linked to it, so the
microprocessor should maintain its own data structure to track the PM Table
Record usage. This data structure can be used to determine when a PM Table
Record has no VC’s linked to it and is thus available to be initialized for a new
PM session.

The sections below discuss the configuration settings, and algorithms to initialize
a PM Table Record, link a VC to a PM Table Record, and unlink a VC from a PM
Table Record

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 117

6.11.3.1 Performance Management Configuration Settings

This is the only OAM type that is supported with additional data structures in
memory. The PM Table Record data structures contain the configuration settings
for each PM session. They are programmed indirectly through the indirect
access registers listed in Table 41.

Table 41 - Registers for PM Table Indirect Accessing

Register Address Description

Performance Management RAM
Record Address, Word Select
and Access Control

0x170 Address field and control bits.
See Section 7.3.3 for
programming information.

Performance Management RAM
Row 0 Word 0 (LSW)

0x171

… (continues for Rows 1 to 6) …
Performance Management RAM
Row 7 Word 2 (MSW)

0x189

Data registers corresponding
to the rows of a PM Table
Record.
See Section 7.3.3 for
programming information.

The configuration settings of the PM Table Records are described in detail in
Table 42. The global settings that configure the global operation for all PM
sessions on the ATLAS-3200, are located in direct registers, and are listed in
Table 43.

Table 42 - PM Table, Config. and Status Field

Bit Name Description

Source_FwdPM Bits 15:14 have the following mapping:
00 : Source neither forward or backward PM cells.
01 : Source backward PM cells upon receipt of

forward PM cells.
10 : Source forward PM cells

Generate_BwdPM

11 : Reserved
0 : This PM session is for a VCC (F5 OAM flow).F4_F5B
1 : This PM session is for a VPC (F4 OAM flow).
0 : This PM session is for a Segment flow.ETE_SegB
1 : This PM session is for an End-to-End flow.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 118

Bit Name Description

If Source_FwdPM = 1 then:
0 : Insertion of Fwd Monitoring cells governed by

settings in Fwd PM Pacing and Head of Line
Blocking Register (0x108).

Force_FwdPM

1 : Forward PM pacing is ignored. Cell insertion
forced when PM Table Record field “Current
Count CLP0+1” = 1.5 * Blocksize

Selects one of the global threshold configurations
00 : Performance Management Threshold A Register

(0x189)
01 : Performance Management Threshold B Register

(0x18A)
10 : Performance Management Threshold C Register

(0x18B)

Threshold_Select[1:0]

11 : Performance Management Threshold D Register
(0x18C)

Blocksize[3:0] Selects the Performance Management block size.
After every block of user cells a PM cell will be
inserted. Use the encoding given in the Data Sheet
[1].
Choose this value based on the expected user cell
data rate, the desired time interval between PM cell
transmission and the acceptable portion of bandwidth
that can be allocated for non-user cells. Small block
sizes are not recommended for active connections as
the PM cells could amount to a significant portion of
the available user bandwidth.
0 : Severely Errored Cell Blocks (SECBs) will be

declared due to lost cells whose CLP = 1.
CLP0_SECBs_Only

1 : Severely Errored Cell Blocks (SECBs) will not be
declared due to lost cells whose CLP = 1. Use
this for connections on which there is no service
guaranteee for CLP = 1 cells.

PM Rollover FIFO
Enable

Enables the fields in the PM Table Record to generate
CRO FIFO entries. See Section 6.9.2 Count Rollover
FIFO for detailed CRO FIFO information.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 119

Bit Name Description

0 : Count fields will saturate at the maximum value.
Use this setting if the Count Rollover FIFO is not
being used. The Cell Count fields must be polled
periodically.

1 : CRO enabled fields will generate an entry in the
Count Rollover FIFO and rollover when their
MSBs are set. Use this setting if the Count
Rollover FIFO is being used.

Reserved Always set to logic 0 when writing. Read value is
undefined.

Fwd_PM0 If Source_FwdPM is set to logic 0 then the Fwd_PM0
bit must be set to logic 1 initialily.
This bit is cleared upon receiving the first Forward
Monitoring cell, along with the current cell count, BIP-
16, and the entire contents of rows 3 and 4. The
Fwd_PM0 bit is used to denote the arrival of the first
Forward Monitoring cell. The Fwd_PM0 bit
suppresses accumulation of the Forward error counts.
If this bit is not set, error counts will be accumulated.
If Source_FwdPM is a logic 1, then if this bit is set to a
logic 1 initially, rows 1 and 7 will be cleared at the end
of the first block of user cells. Initializing Row 0 is the
responsibility of the management software during
setup.

Bwd_PM0 This must be set to a logic 1 initially. This bit is
cleared upon receiving the first Backward Reporting
cell. At that time the contents of rows 5, 6, and 7 are
cleared (except for the Bwd SECBC count which is
copied from the Backward Reporting cell) and Row 2
is initialized with values copied from the Backward
Reporting cell.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 120

Table 43 - Global Performance Management Settings

Register Bit Name Description

Controls timestamp setting in generated
Bwd PM cells.
When the Copy_FwPM_Timestamp bit is
logic 1, then If, or if this bit is logic 0, then
the timestamp of the Bwd PM cell is set to
the default all-ones.
0 : Timestamp of Bwd PM cells are set

to the default all-ones.

Cell Processor
Configuration
(0x100)

Copy_FwPM_T
imestamp

1 : When a Bwd PM cell is generated to
the BCIF upon reception of a Fwd
PM cell and the BCIF is not full then
the timestamp of the generated Bwd
PM cell is set equal to the timestamp
of the Fwd PM cell.
If the BCIF is full when the Fwd PM
cell arrives timestamp of Bwd PM
cells are set to the default all-ones
since there may be a delay before
the Bwd PM is generated.

Fwd PM Pacing
and Head of Line
Blocking
(0x108)

FPMP[15:0] Forward PM Pacing control. Specifies the
number of cells between insertion of
consecutive Fwd Monitoring PM cells for
all PM sessions. Set this with
consideration to the activity of the
connection and effects of the PM cell load.
This should be programmed during
ATLAS-3200 Initialization.
Note that the Fwd Pacing can be disabled
for individual PM sessions with the
Force_FwdPM bit in the PM Table Record.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 121

Register Bit Name Description

FPMTO[15:0] Forward PM Time Out control. Specifies
the number of cell periods that a Fwd PM
cell can wait to be inserted before being
discarded. This feature will prevent
malfunctioning PHY’s from blocking the
PM flows on the other PHY’s.
This should be programmed during
ATLAS-3200 Initialization.
0x0000 : Time Out is disabled and Fwd
PM cells can wait indefinitely. This is the
default setting.

MMISINS[11:0]

MERROR[3:0]

Performance
Management
Threshold A, B,
C, D
(0x189, 0x18A,
0x18B, 0x18C) MLOST[3:0]

Thresholds of misinserted, errored, and
lost cells per Performance Management
block required to declare a Severely
Errored Cell Block (SECB) for misinserted
cells (SECB Misinserted) on a forward or
backward PM flow. When a SECB is
declared on a PM flow, then either the
SECB Misinserted, SECB Errored, or
SECB Lost fields in the PM Table Record
will be incremented.
For example, if MMISINS[11:0] = 0x10A
then 266 misinserted cells would have to
arrive in a single PM block to increment
the Fwd or Bwd SECB Misinserted Count
(depending on flow direction) field.
There are four sets of these fields, in the
A, B, C, and D registers. Each PM Table
Record uses its Threshold_Select field to
choose one set of these threshold
configurations for its PM session. These
threshold values will typically be
programmed during ATLAS-3200
Initialization.
If set to all zeroes then detection for that
type of SECB is disabled and the
corresponding field in the PM Table
Record will not be incremented.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 122

6.11.3.2 Algorithm for PM Table Record Initializing

To create a new Performance Management session a free PM Table Record
needs to be initialized with the desired settings. The general algorithm is as
follows:

1. Select either PM Bank 1 or PM Bank 2 as the location for the PM Table
Record.

2. Locate an unused PM Table Record.

3. Write to Row 0 of the PM Table Record with the PM Configuration & Status
Field set to the values described in Table 42 and the remaining fields set to
all zeroes. See section 7.3.3 for the write procedure.

Ensure that Fw_PM0 and Bw_PM0 in the PM Configuration & Status Field
are set to 1 so that Rows 1 to 7 are initialized automatically. When the first
block of user cells is received, Rows 1 and 7 are cleared and Fw_PM0 is set
to 0. When the first Backward Reporting cell is received, Rows 5, 6, and 7
are cleared (except for the Bwd SECBC count which is copied from the
Backward Reporting cell), Row 2 is initialized with values copied from the
Backward Reporting cell, and Bw_PM0 is set to 0.

6.11.3.3 Algorithm for PM Table Record Linking

A Virtual Connection can link to an initialized PM Table Record using the
following procedure:

1. Select an initialized PM Table Record from either Bank 1 or Bank 2. The PM
Table Record may already be in use by another VC. Note that each VC can
link to one PM Table Record in Bank 1 and one in Bank 2.

2. Write to the VC’s VC Linkage Table Record with the following settings,
choosing either bank 1 or 2 fields depending on which bank the PM Table
Record is in:

• PM 1 Address/PM 2 Address set to the PM Table Record’s address

• PM 1 Active/PM 2 Active set to logic 1

3. Update the microprocessor data structure that tracks the VC’s linked to each
PM Table Record.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 123

6.11.3.4 Algorithm for PM Table Record Unlinking

A Virtual Connection can unlink from a PM Table Record using the following
procedure:

1. Write to the VC Linkage Table Record and set the PM 1 Active/PM 2 Active
bit to 0, choosing either bank 1 or 2 field depending on which bank the PM
Table Record is in.

2. Update the microprocessor data structure that tracks the VC’s linked to each
PM Table Record. If there are no more VC’s linked to this PM Table Record
then mark it as an available table.

6.11.4 APS Cell Processing

The contents of Automated Protection Switching (APS) cells are not processed
by the ATLAS-3200 but they have configurable routing through the cell
processor. The settings listed in Table 44 configure Automated Protection
Switching OAM operation for the all connections on the ATLAS-3200.

Table 44 - Global APS Settings

Register Bit Name Description

Cell Processor Routing
Configuration (0x101)

APSTOBCIF

Cell Processor Routing
Configuration (0x101)

APSTOOCIF

Control APS cell routing. See
Section 6.12 Cell Routing for
details.

Per-PHY APS Indication 1
(0x159)
Per-PHY APS Indication 2
(0x15A)

APS[47:0] Enables APS switching on a per-
PHY basis.
If APS switching is enabled for a
PHY, then when a segment VP-
AIS cell is terminated on it, an
end-to-end VP-AIS cell will not
be generated.
If APS switching is disabled for a
PHY, then when a segment VP-
AIS cell is terminated, an end-to-
end VP-AIS cell may be
generated.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 124

6.11.5 Activation/Deactivation Cell Processing

The contents of Activation/Deactivation (A/D) cells are not processed by the
ATLAS-3200 but they have configurable routing through the cell processor. The
settings listed in Table 45 configure Activation/Deactivation OAM operation for
the all connections on the ATLAS-3200.

Table 45 - Global Activation/Deactivation Settings

Register Bit Name Description

Cell Processor Routing
Configuration (0x101)

ACTDETOBCIF

Cell Processor Routing
Configuration (0x101)

ACTDETOUP

Cell Processor Routing
Configuration (0x101)

ACTDETOOCIF

Control A/D cell routing. See
Section 6.12 Cell Routing for
details.

6.11.6 System Management Cell Processing

The contents of System Management (SM) cells are not processed by the
ATLAS-3200 but they have configurable routing through the cell processor. The
settings listed in Table 46 configure System Management OAM operation for the
all connections on the ATLAS-3200.

Table 46 - Global System Management Settings

Register Bit Name Description

Cell Processor Routing
Configuration (0x101)

SYSMANTOBCIF

Cell Processor Routing
Configuration (0x101)

SYSMANTOUP

Cell Processor Routing
Configuration (0x101)

SYSMANTOOCIF

Control SM cell routing. See
Section 6.12 Cell Routing for
details.

6.11.7 Resource Management Cell Processing

The contents of Resource Management (RM) cells are not processed by the
ATLAS-3200 but they have configurable routing through the cell processor. The

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 125

settings listed in Table 47 configure System Management OAM operation for the
all connections on the ATLAS-3200.

Table 47 - Global Resource Management Settings

Register Bit Name Description

Cell Processor Routing
Configuration (0x101)

DropRM

Cell Processor Routing
Configuration (0x101)

RMtoBCIF

Cell Processor Routing
Configuration (0x101)

RMtoUP

Control RM cell routing. See
Section 6.12 Cell Routing for
details.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 126

6.12 Cell Routing

ATM cells are routed through the ATLAS-3200’s cell processor based on
properties of the cells and on the setting of the various cell routing configuration
bits. This section provides a reference to the cell routing with flow charts
illustrating how each type of ATM cell is affected by the cell routing configuration
bits. Note that the flow charts are only intended to explain the cell routing
configuration bits and do not show cell termination or cell generation.

There are global cell routing configuration bits that affect cells on all connections,
and there are per-VC routing configuration bits that affect cells only for a specific
VC. The global configuration bits will typically be set during ATLAS-3200
initialization (see Section 6.2 ATLAS-3200 Initializing), and the per-VC
configuration bits will typically be set each time a VC is added (see Section 6.5
Virtual Connection Adding).

There are three sources for cells in the ATLAS-3200:

• Input Cell Interface (ICIF)

• Input Microprocessor Cell Interface (IMCIF)

• Input Backwards Cell Interface (IBCIF)

The incoming cells are passed through the Cell Processor for processing and are
then directed them to any of the three cell outputs:

• Output Cell Interface (OCIF)

• Output Microprocessor Cell Interface (OMCIF)

• Output Backwards Cell Interface (OBCIF)

Although OAM cells are typically only a small portion of the total cell flow, the
majority of the cell routing configuration is devoted to handling OAM flows. For
background OAM information, see Appendix A: OAM Cell Descriptions for a
reference to the OAM cell structures and their intended uses.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 127

6.12.1 Flow Chart Guide

Flow charts are used to illustrate how the cell processor routes cells based on
cell properties, per-VC configuration bits, and global configuration bits. The
symbols shown in Figure 28 are used in the flow charts.

Figure 28 - Cell Flow, Legend

Active CellOAM Cell ?

Drop_VC

LBtoOCIF

Per-VC Decision
Decision based on the value
of a bit in the current VC
Record Table. Affects each
VC independently.

Global Decision
Decision based on the value
of a bit in a global register.
Affects all VC's.

Cell Property Decision
Decision based on a property
of the current cell.

Decision Path Off Page
Decision path that
connects to another flow
chart

OMCIF
Cell Source or Sink
Input or Output interface
that cells arrive from or
are sent to.

Cell Modifier
Paths that arrive here
cause modifications to the
arriving cell. There is only
on occurence of this.

Modify ParentLB to Return LBl
� set Loopback Indication = 1
� set Location ID = OAM

Location ID Register

On the flow charts, some decision boxes do not have both possible decision
paths shown. If a decision path is not shown it means that decision stream that
reached that box is terminated and no further paths will be taken from there.
However, any other streams on the flow diagram will still continue.

Converging paths represent an ‘OR’ connection. If one or more of the
converging paths is followed then the decision stream will continue on the
subsequent path. Note that if more than one converging paths are followed
there is still only one copy of the cell.

As an example, in Figure 39 starting at the ‘YES’ path from the ‘A/D cell?’
decision, the paths to the OCIF, OMCIF, and OBCIF will be determined by the
subsequent decision boxes as detailed in Table 48, Table 49, and Table 50.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 128

Table 48 - Example Cell Flow to OCIF Logic Chart

ACTDEtoOCIF Cell at flow
end point?

Drop_VC Result

0 YES X Cell will NOT go to the OCIF
Neither of the converging paths to
the Drop_VC decision box is
followed so the cell can’t reach
the OCIF.

1 X 0 Cell will be copied to the OCIF.
A path to the Drop_VC will always
be reached regardless of the
value of ‘Cell at flow end point?’

X NO 0 Cell will be copied to the OCIF.
A path to the Drop_VC will always
be reached regardless of the
value of ACTDEtoOCIF.

X X 1 Cell will NOT go to the OCIF.
At the Drop_VC decision box, a
value of 1 indicates that no further
paths will be taken from here.
Cells are not prevented from
reaching the OMCIF or OBCIF
however.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 129

Table 49 - Example Cell Flow to OMCIF Logic Chart

Cell at flow end point? ACTDEtoUP Result

YES 1 Cell will be copied to the OMCIF
X 0 Cell will NOT go to the OMCIF.

NO X Cell will NOT go to the OMCIF.

Table 50 - Example Cell Flow to OBCIF Logic Chart

Cell at flow end point? ACTDEtoBCIF Result

YES 1 Cell will be copied to the OBCIF
X 0 Cell will NOT go to the OBCIF.

NO X Cell will NOT go to the OBCIF.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 130

One decision that frequently determines the routing of an OAM cell is whether or
not the cell is at a flow end point. A cell is at a flow end point either when it is a
Segment cell and it reaches a Segment End Point, or when it reaches an End-
To-End Point regardless of whether it is a Segment or End-to-End cell. The
symbol shown in Figure 29 is used to represent this decision in other flow charts.
Note that it is a decision based on two per-VC configuration bits, and one cell
property.

Figure 29 - Cell at Flow End Point Symbol

0
End_to_End_

Point

ETE

1

OAM Flow
Type

SEG

1

0NO

YES

Cell at flow end
point ?

NO

YES

Segment_End_
Point

6.12.2 IMCIF Cell Routing

When a cell is inserted by the microprocesor to the Input Microprocessor Cell
Interface (IMCIF), the routing of the cell depends whether the PROC_CELL bit
was set for that cell. If PROC_CELL is set to logic 1, then the cell will be
processed as if it originated from the Input Cell Interface (ICIF) and will follow the
Cell Routing flow charts for the ICIF in Section 6.12.3. If PROC_CELL is set to
logic 0 then the cell will simply proceed directly to the OCIF without being routed
through the cell processor.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 131

6.12.3 ICIF Cell Routing

Figure 30 - Preliminary Cell Flow from ICIF

Inactive_On_
DRAM_Err

1

1

InactiveToUP

1

DRAM_CRC_
Err

0

0

NO

OMCIF

ICIF

VC_to_UP

1

Active ICIF Cell

Transfer error
across bus ?

YES

Invalid PTI or
VCI ?

YES

XferErrToUP

INVPTIVCItoUP

NO

NO

1

1

Uprovisioned
VC or Search

Error ?

YES

BADVCtoUP

1

DROPINVPTIVCI
0

OCIF

VC_to_BCIF

1

OBCIF

Active

1

0

Drop_VC
0

NOTE: Cells may be routed to the OBCIF or OMCIF (by VC_to_BCIF and
VC_to_UP) here, regardless of any future decisions on ‘Active ICIF Cell’ .

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 132

6.12.3.1 User Cell Flow from ICIF

Figure 31 - User Cell Flow

Active ICIF Cell

YES

User Cell ?

Drop_VC
0

OCIF

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 133

6.12.3.2 OAM Cell Flow from ICIF

Figure 32 - Preliminary OAM Cell Flow

CRC10toUP

Error Detected

No Error

OAM Cell ?

YES

CRC Check

DROPCRCEOAM

OAM Cell

1

0

OMCIF

Active ICIF Cell

Cell at flow
end point?

Drop_VC
0

NO

OCIF

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 134

Figure 33 - AIS/RDI/CC Cell Flow

Cell at flow
end point?

FM_to_UP

OAM Cell

AIS/RDI/CC
cell ?

YES

Drop_VC
0

NO

OMCIF

1

OCIF

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 135

Figure 34 - Loopback Cell Flow, (LB_Route = ‘00’)

Cell at flow
end point?NOLBtoOCIF

OAM Cell

1

LB Cell ?

YES

OCIF

Drop_VC
0

YES

LB_Route =
'00' ?

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 136

Figure 35 - Loopback Cell Flow (LB_Route=‘01’ or ‘10’,Parent)

1
(Parent LB Cell)

OBCIF

LB_Route

'01'

'10'

OMCIF

0
(Returned LB Cell)

Modify ParentLB to Return LBl
� set Loopback Indication = 1
� set Location ID = OAM

Location ID Register

Loopback
Indication

Location ID
matches

Location ID =
all ones

Location ID =
all zeroes

OAM Flow
Type

End_to_End_
Point

End_to_End_
Point

Segment_
End_Point

YESYESYES

SEG SEGSEG

ETE

ETE

11 1

OCIF

OAM Flow
Type

OAM Flow
Type

Cell at flow
end point ?

ETE

NO

OAM Flow
Type

SEG

Location ID
matches

NO

LBtoOCIF

YES

Drop_VC
0

Returned LB Cell,
LB_Route = '01' or '10'

OAM Cell

LB Cell ?

YES

YES

LB_Route =
'01' or '10'?

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 137

Figure 36 - Loopback Cell Flow (LB_Route=‘01’ or ‘10’, Return)

NO

OMCIF

Rtd_LB_to_
UP_at_End

1

YES

Source ID
matches

Cell at flow
end point ?

YES

LBtoOCIF

Returned LB Cell
LB_Route = '01' or '10'

NO

OCIF

Drop_VC
0

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 138

Figure 37 - Loopback Cell Flow, (LB_Route = ‘11’)

1

OMCIF

LBtoOCIF

OAM Cell

YES

OCIF

Drop_VC
0

YES

LB Cell ?

LB_Route =
'11' ?

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 139

Figure 38 - PM Cell Flow

OAM Cell

OMCIF

PM cell ?

OCIF

Drop_VC
0

NO Cell at flow
end point?

PMtoUP

1

YES

YES

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 140

Figure 39 - Activate/Deactivate Cell Flow

OAM Cell

YES

A/D cell ?

Drop_VC
0

ACTDEtoOCIF NO

1

Cell at flow
end point?

OMCIF

ACTDEtoUP ACTDEtoBCIF

1

OBCIF

1

YES

OCIF

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 141

Figure 40 - APS Cell Flow

OAM Cell

YES

Drop_VC
0

OBCIF

APS cell ?

APStoOCIF

Cell at flow
end point?NO

0

1

APStoUP

APStoBCIF

1

1

0

OMCIFOCIF

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 142

Figure 41 - System Management Cell Flow

OAM Cell

YES

OMCIF

SYSMAN cell ?

OCIF

Drop_VC
0

SYSMANtoOCIF NO

1

Cell at flow
end point?

SYSMANtoUP SYSMANtoBCIF

1

OBCIF

1

YES

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 143

Figure 42 - OAM Cell Flow

OAM Cell

YES

Undefined
OAM cell ?

Drop_VC
0

UNDEFtoOCIF NO

1

Cell at flow
end point?

OMCIF

UNDEFtoUP UNDEFtoBCIF

1

OBCIF

YES

OCIF

1

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 144

6.12.3.3 Resource Management Cell Flow from ICIF

Figure 43 - RM Cell Flow

CRC10toUP

Error Detected

No Error

RM Cell ?

YES

CRC Check

DROPCRCERM

0

1

OMCIF

Active Cell

OBCIF OCIF

Drop_VC
0

RMtoBCIF

1

RMtoUP

1

0
DropRM

0

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 145

6.12.4 IBCIF Cell Routing

Figure 44 - Preliminary Cell Flow from the IBCIF

Active

Inactive_On_
DRAM_Err

1

1

InactiveToUP

1

DRAM_CRC_
Err

0

0

0

OMCIF

1

NO Uprovisioned
VC or Search

Error ?

YES

BADVCtoUP

1

Timeout_To_UP

1

Active IBCIF Cell

IBCIF

Cell timed out ?

YES

Search_From
IBCIF

NO

1

0

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 146

Figure 45 - User Cell Flow from the IBCIF

OMCIF

User Cell ?

YES

OCIF

1

Drop_VC
0

VCtoBCIF

Drop_VC
0

1

OBCIF

VCtoUP

1

Active IBCIF Cell

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 147

Figure 46 - OAM and RM Cell Flow from the IBCIF

OMCIF

OAM or RM
Cell ?

YES

CRC10toUP

Error Detected

CRC Check

OCIF

1

Drop_VC
0

VCtoBCIF

Drop_VC
0

1

OBCIF

VCtoUP

1

Active IBCIF Cell

Error Detected

No Error
CRC Check

DROPCRCEOAM

0

1

Type of Cell

OAM

RM

DROPCRCERM

0

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 148

7 PROGRAMMING COMPONENT INTERFACES

This section contains guides to programming the basic reading and writing
interfaces to each of the ATLAS-3200 data structures shown in Figure 3, Figure
4, and Figure 5. Each data structure has a set of indirect registers that provide
read and write access. The formats of the indirect registers are tailored
specifically for each data structure, but in general they all include a data field, an
address field, a Read/Write bit, and a BUSY bit. The general programming
algorithms using the indirect register fields are similar for each data structure.
The general programming algorithm for an indirect register Write is as follows:

1. Wait for the component to be available by checking the BUSY bit.

2. Set the address field so that the desired location of the data structure will be
accessed, and set the data field to the desired value.

3. Write a logic 0 to the Read/Write bit to initiate the write cycle.

The general programming algorithm for an indirect register Read is as follows:

1. Wait for the component to be available by checking the BUSY bit.

2. Set the address field so that the desired location of the data structure will be
accessed.

3. Write a logic 1 to the Read/Write bit to initiate the write cycle.

4. Wait for the data access to complete by checking the BUSY bit, then

For each data structure, the specific implementation of the programming
algorithms, a summary of the registers involved, and example pseudo-code are
provided in the sections below.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 149

7.1 Direct Register Interfacing

All operations done by the microprocessor on the ATLAS-3200 are performed by
accessing the direct microprocessor interface registers. These direct register
access routines are the lowest level interface to the ATLAS-3200 and are used
by all other programming routines.

7.1.1 Reading

The direct register read involves performing a single read cycle across the
microprocessor interface bus. The implementation of this routine depends on
the microprocessor and system hardware, so it is an application specific routine.
See Section 5 for an overview of the microprocessor interface bus and see the
Data Sheet [1] for bus timing information.

7.1.2 Writing

The direct register write involves performing a single write cycle across the
microprocessor interface bus. The implementation of this routine depends on
the microprocessor and system hardware, so it is an application specific routine.
See section 5 for an overview of the microprocessor interface bus and see the
Data Sheet [1] for bus timing information.

7.1.3 Example Routines

These example routines are provided as a possible implementation for a system
with multiple ATLAS-3200 devices located in a memory mapped address space.
There can be many possible implementations depending on the system
hardware though.

7.1.3.1 regRead

This routine performs a read of the specified register of the specified ATLAS
device. The specific implementation of this routine will rely entirely on the
microprocessor and supporting hardware.

Inputs: regAddr : address of the register to read from

Outputs: Return value : value read from the register

Pseudocode:

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 150

UINT4 regRead(
UINT2 regAddr)

{
UINT4 address
UINT4 value

address = ATLAS3200_BASE_ADDR + regAddr
value = *(address)

/* check bus errors via interrupt handling */

return value
}

7.1.3.2 regWrite

This routine performs a read of the specified register of the specified ATLAS
device. The specific implementation of this routine will rely entirely on the
microprocessor and supporting hardware.

Inputs: regAddr : address of the register to write to
value : value to write

Outputs: (none)

Pseudocode:

VOID regWrite(
UINT2 regAddr,
UINT4 value)

{
UINT4 address

address = ATLAS3200_BASE_ADDR + regAddr
*(address) = value

return
}

7.1.3.3 regWriteMask

This routine writes a value to a register only modifying bits which are set in the
mask word. Note that since this routine performs a read, bits that clear upon
read, such as interrupt indication bits, will be lost.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 151

Inputs: regAddr : address of the register to write to
writeMask : write bit mask, only bits that are set to logic 1

will be written to the bit value specified by
writeValue

writeValue : value to write to the bits that are enabled for
writing

Outputs: (none)

Pseudocode:

VOID regWriteMask(
UINT2 regAddr,
UINT4 writeMask
UINT4 writeValue)

{
UINT4 value

value = regRead(regAddr)
value = value & (~writeMask)
value = value | (writeValue & writeMask)
regWrite(regAddr, value)

return
}

7.1.3.4 regPollBitLow

This routine polls the specified register until either all the bits indicated in the bit
mask are logic 0 or a timeout occurs. Note that since this routine performs a
read, bits that clear upon read, such as interrupt indication bits, will be lost.

Inputs: regAddr : address of the register to containing the bit
that will be polled

bitMask : bits that are set to logic 1 in the bitMask will be
polled until they all have a value of logic 0

Outputs: (none)

Pseudocode:

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 152

VOID regPollBitLow(
UINT2 regAddr,
UINT4 bitMask)

{
UINT4 value

loop TIMEOUT_NUM times
value = regRead(regAddr)
if (~value & bitMask) = bitMask then

return SUCCESS
end loop
return ERROR_TIMED_OUT
}

7.1.3.5 regPollBitHigh

This routine polls the specified register until either all the bits indicated in the bit
mask are logic 1 or a timeout occurs. Note that since this routine performs a
read, bits that clear upon read, such as interrupt indication bits, will be lost.

Inputs: regAddr : address of the register to containing the bit
that will be polled

bitMask : bits that are set to logic 1 in the bitMask will be
polled until they all have a value of logic 1

Outputs: (none)

Pseudocode:

VOID regPollBitHigh(
UINT2 regAddr,
UINT4 bitMask)

{
UINT4 value

loop TIMEOUT_NUM times
value = regRead(regAddr)
if (value & bitMask) = bitMask then

return SUCCESS
end loop
return ERROR_TIMED_OUT
}

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 153

7.2 External SRAM Interfacing

Access to the Search Tables and VC Linkage Table in external SRAM is provided
indirectly through the registers listed in Table 51. There are a maximum of 128K
Search Table Entries and 64K VC Linkage Table Records that may be accessed.
The number of Tables available depends on the size of SRAM used in the
specific application. The Tables are addressed by specifying an 16-bit address
within either the Search partition or Linkage partition of the SRAM.

While the ATLAS-3200 is performing an SRAM access requested by the
microprocessor the BUSY bit in the SRAM Access Control Register is asserted.
When this bit is set the microprocessor should not initiate new SRAM access
requests or read data from the SRAM Data Registers. To monitor the status of
the BUSY bit the SRAM Access Control Register can be polled or the external
UP_BUSY signal can be directly monitored by the microprocessor. The bits in
the SRAM Access Control Register, as described in Table 52, control the indirect
access cycle.

It is important that the SRAM_BUSY_EN bit in the Master Configuration and
Reset (0x000) register is set to 1 so that the BUSY bit and the UP_BUSY signal
are enabled. Note that the UP_BUSYB may also indicate the status of the
DRAM BUSY bit. The polarity of the UP_BUSYB signal is dependent on the
value of BUSYPOL in the Master Configuration and Reset Register. The bits
related to SRAM configuration are described in Table 53.

This section describes the algorithms for reading and writing an SRAM entry
using the indirect registers.

Table 51 - Registers for SRAM Indirect Accessing

Register Address Description

SRAM Access Control 0x10C Address field and control bits. See
Table 52 for details.

SRAM Data LSW 0x10D SRAM data [31:0]
SRAM Data MSW 0x10E SRAM data [63:32]

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 154

Table 52 - SRAM Access Control Register (0x10C)

Bit Name Description

0 : Write request initiated when this is written.31 RWB

1 : Read request initiated when this is written.

0 : Indicates SRAM is available for an access
and values in the Data registers are stable.

30 BUSY

1 : Indicates an SRAM Access request is
pending. Do not initiate another request or
read the Data registers.

0 : Access Search Table area of SRAM.17 Search/Linkage

1 : Access Linkage Table area of SRAM.

16:0 SA[16:0] SRAM Address in either the Search or Linkage
areas of SRAM.

Table 53 - Register Bits for SRAM Config. and Interrupts

Bit Name Register Description

SRAM_BUSY_EN Master Configuration
and Reset (0x000)

Enables the UP_BUSY signal
and BUSY bit in the SRAM
Access Control Register
(0x10C).
IMPORTANT: The default value
of this bit is 0, however use of
the BUSY signal is required to
ensure correct SRAM accesses
so this enable bit should always
be set to 1.
0 : Even parity is generated

and checked during
SRAM accesses.

SRAM_Even_Parity Cell Processor
Configuration (0x100)

1 : Odd parity is generated
and checked during
SRAM accesses.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 155

Bit Name Register Description

SPRTYI[7:0] Master Interrupt
Status #2 (0x003)

Interrupt status flags indicating
parity errors over SDAT[63:0].
See Datasheet [1] for details.

SPRTYE[7:0] Master Interrupt
Enable #2 (0x005)

Enable interrupts generated by
the corresponding interrupt
status flags.

7.2.1 Reading External SRAM Entries

To perform a read, execute the following steps:

1. Check that the BUSY bit in the SRAM Access Control Register is deasserted.
Do not proceed if the BUSY bit is asserted.

2. Write to the SRAM Access Control Register with the following settings:

• RWB bit set to logic 1

• Search/Linkage bit set to logic 0 if reading a Search Table Entry or
set to logic 1 if reading a VC Linkage Table.

• SA[16:0] set to the address of the entry to be read

This will initiate the SRAM write cycle and assert the BUSY bit.

3. Wait until the BUSY bit is deasserted. This indicates that the SRAM access
is complete.

4. Read the data from the SRAM Data Registers.

7.2.2 Writing External SRAM Entries

To perform a write, execute the following steps:

1. Check that the BUSY bit in the Access Control Register is deasserted. Do
not proceed if the BUSY bit is asserted.

2. Write data to the SRAM Data MSW and SRAM Data LSW registers as
required.

3. Write to the SRAM Access Control Register with the following settings:

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 156

• RWB bit set to logic 0

• Search/Linkage bit set to logic 0 if writing a Search Table Entry or
set to logic 1 if writing a VC Linkage Table.

• SA[16:0] set to the address of the entry to be written

This will initiate the SRAM write cycle and assert the BUSY bit. When the
BUSY bit is deasserted the SRAM access is complete.

7.2.3 Diagnostic Testing

Writing and reading a series of test patterns can test the external SRAM and its
interface to the ATLAS-3200. There are many possible test procedures that can
be used but a test algorithm based on "Fault Modeling and Test Algorithm
Development for Static Random Access Memories”[4] is performed as follows:

1. Write "pattern" to all locations with an incrementing address.

2. Read "pattern" and write inverse "pattern" to all locations with an
incrementing address.

3. Read inverse "pattern" and write "pattern" to all locations with an
incrementing address.

4. Read "pattern" and write inverse "pattern" to all locations with a decrementing
address.

5. Read inverse "pattern" and write "pattern" to all locations with a decrementing
address.

Steps 1 to 5 are repeated using the "pattern" values of 0x00, 0x55 and 0xCD
repeated over the eight byte width of the SRAM bus. The last pattern verifies the
parity bits.

7.2.4 Example Routines

7.2.4.1 Definitions

typedef struct {
UNIT4 msw,
UINT4 lsw

} sSRAM_DATA

typedef enum {

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 157

SRAM_SEARCH = 0,
SRAM_LINKAGE

} SRAM_PARTITION_TYPE

7.2.4.2 sramRead

This routine reads a row from the external SRAM. Polling of the BUSY bit in the
SRAM Access Control Register is used. Modifications could be made to use the
external UP_BUSYB signal. The specific implementation of this routine will rely
entirely on the microprocessor and supporting hardware.

Inputs: address : SRAM address in either the Linkage or Search
Table partition

sramPartition : Specifies access to either the Linkage or
Search table SRAM partitions

Outputs: sramData Pointer to SRAM data structure that will contain
the 64-bit value that was read

Pseudocode:

VOID sramRead(
UINT2 address,
SRAM_PARTITION_TYPE sramPartition,
sSRAM_DATA *sramData)

{
UINT4 controlWord

/*ensure BUSY bit is low*/
regPollBitLow(REG_SRAM_ACCESS_CTRL, BTMSK_SRAM_BUSY)

/*write to control register to initiate transfer*/
controlWord = (BTMSK_SRAM_RWB | (BTMSK_SRAM_SA & address))
if (sramPartition = SRAM_LINKAGE) then

controlWord = controlWord | BTMSK_SRAM_SEARCH_LINKAGE
end if
regWrite(REG_SRAM_CONTROL, controlWord)

/*wait for transfer to complete*/
regPollBitLow(REG_SRAM_CONTROL, BTMSK_SRAM_BUSY)

/*read data*/
sramData->msw = regRead(REG_SRAM_DATA_MSW)

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 158

sramData->lsw = regRead(REG_SRAM_DATA_LSW)

/*handle SRAM parity errors though interrupt handler*/

return
}

7.2.4.3 sramWrite

This routine writes a row to the external SRAM. Polling of the BUSY bit in the
SRAM Access Control Register is used. Modifications could be made to use the
external UP_BUSYB signal. The specific implementation of this routine will rely
entirely on the microprocessor and supporting hardware.

Inputs: address : SRAM address in either the Linkage or Search
Table partition

sramPartition : Specifies access to either the Linkage or
Search table SRAM partitions

sramData Pointer to SRAM data structure that will contain
the 64-bit value that will be written

Outputs: (none)

Pseudocode:

VOID sramWrite(
UINT4 address,
SRAM_PARTITION_TYPE sramPartition,
sSRAM_DATA *sramData)

{
UINT4 controlWord

/* ensure BUSY bit is low */
regPollBitLow(REG_SRAM_CONTROL, BITPOS_SRAM_CONTROL_BUSY)

/* write data */
regWrite(REG_SRAM_DATA_MSW, &sramData->msw)
regWrite(REG_SRAM_DATA_LSW, &sramData->msw)

/* write to control register to initiate transfer */
controlWord = (BTMSK_SRAM_SA & address)
if (sramPartition = SRAM_LINKAGE) then

controlWord = controlWord | BTMSK_SRAM_SEARCH_LINKAGE

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 159

end if
regWrite(REG_SRAM_CONTROL, controlWord)

/* handle SRAM parity errors though interrupt handler */

return SUCCESS
}

7.2.4.4 sramTest

This function performs a diagnostic test of the SRAM by reading and writing a
series of test patterns. Depending on the depth of the SRAM, this test may take
several seconds.

The global constant, SRAM_MAX_ADDRESS, determines the depth of RAM
tested. Note that the test overwrites the contents of SRAM.

Inputs: (none)

Outputs: faultAddress : address of the first SRAM fault location that
was found

faultPartition : partition that the first SRAM fault was located
in

Pseudocode:

UINT1 sramTest(
UINT4 *faultAddress
SRAM_PARTITION_TYPE *faultPartition)

{
UINT1 pattern[MAXPATTERN]={ 0x00, 0x55, 0xCD }
UINT4 patternWord
sSRAM_DATA sramPattern
sSRAM_DATA sramInvPattern
UINT4 address

for patternIndex = 0 to MAXPATTERN – 1

patternWord = (pattern[patternIndex] << 24) |
(pattern[patternIndex] << 16) |
(pattern[patternIndex] << 8) |
pattern[patternIndex]

sramPattern.lsw = patternWord

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 160

sramPattern.msw = patternWord

sramInvPattern.lsw = ~patternWord
sramInvPattern.msw = ~patternWord

/* Write "pattern" with an incrementing address */
for address = 0 to SRAM_MAX_ADDRESS

sramWrite(address, SRAM_LINKAGE, sramPattern)
sramWrite(address, SRAM_SEARCH, sramPattern)

next address

/* Read "pattern" and write inverse "pattern” with an incrementing
address */

for address = 0 to SRAM_MAX_ADDRESS
/* test Linkage partition */
if sramRead(address, SRAM_LINKAGE, sramPattern) != patternWord

then
faultAddress = address
faultPartition = SRAM_LINKAGE
return FAILURE

end if
sramWrite(address, SRAM_LINKAGE, sramInvPattern)

/* test Search partition */
if sramRead(address, SRAM_SEARCH, sramPattern) != patternWord

then
faultAddress = address
faultPartition = SRAM_SEARCH
return FAILURE

end if
sramWrite(address, SRAM_SEARCH, sramInvPattern)

next address

/* Read inverse "pattern" and write "pattern" to all locations with
incrementing addresses */

/* Read "pattern" and write inverse "pattern" to all locations with
decrementing addresses */

/* Read inverse "pattern" and write "pattern" to all locations with
decrementing addresses */

next patternIndex

return SUCCESS
}

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 161

7.3 VC Table Entry Interfacing

Access to the VC Table Records in the VC RAM is provided indirectly through the
registers listed in Table 54. The VC RAM has 64K VC Table Records that are
addressed by specifying the a 16-bit Virtual Connection Record Address (VCRA).
The bits in the VC Table Access Control Register, as described in Table 55,
control the indirect access cycle.

This section describes the algorithms for reading and writing a VC Table Record
using the indirect registers.

Table 54 - Registers for VC Table Entry Interfacing

Register Address Description

VC Table Access Control 0x111 Address field and control bits
VC Table Write Enable 1 0x112 Write enables for individual

fields in the VC Table Record
VC Table Write Enable 2 0x113 Write enables for individual

fields in the VC Table Record
VC Table Data Row 0, Word 0
(LSW) (RAM Data [31:0])

0x114

VC Table Data Row 0, Word 1
(RAM Data [63:32])

0x115

VC Table Data Row 0, Word 2
(RAM Data [95:64])

0x116

VC Table Data Row 0, Word 3
(MSW) (RAM Data [127:96])

0x117

(VC Table Data Row registers continue for
Rows 2 to 6) …

Data registers corresponding
to the rows of a VC Table
Record. Write to these
registers before initiating a VC
Table Record write operation,
or read them after completing
a VC Table Record read
operation.

Table 55 - VC Table Access Control Register (0x111)

Bit Name Description

0 : Write request initiated when this is written.31 RWB

1 : Read request initiated when this is written.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 162

Bit Name Description

0 : Indicates SRAM is available for an access
and values in the Data registers are stable.

30 BUSY

1 : Indicates an SRAM Access request is
pending. Do not initiate another request or
read the Data registers.

0 : Cell Count fields are unchanged after a read.29 CC_ClearOnRd

1 : After a read access, the Cell Count fields of
the VC Table are written to all 0’s and the VC
Table’s CRC is updated.

0 : Alternate Cell Count fields are unchanged
after a read.

28 AC_ClearOnRd

1 : After a read access, the Alternate Cell Count
fields of the VC Table are written to all 0’s
and the VC Table’s CRC is updated.

0 : Non-compliant Cell Count fields are
unchanged after a read.

27 NCC_ClearOnRd

1 : After a read access, the Non-compliant Cell
Count fields of the VC Table are written to all
0’s and the VC Table’s CRC is updated.

26:24 Unused Always set to logic 0 when writing. Read value is
undefined.
0 : No CRC error occurred during the last VC

Table transfer.
23 DRAM_CRC_ERR

1 : Indicates CRC of the VC Table that was
transferred was incorrect. Will be set after a
read or write access if an error was detected.

22:17 Unused Always set to logic 0 when writing. Read value is
undefined.

16 Reserved Always set to logic 0 when writing. Read value is
undefined.

15:0 VCRA[15:0] Virtual Connection Record Address specifying
which VC Table to access

7.3.1 Reading VC Table Records

The procedure to read a VC Table Record from a specified VCRA is as follows:

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 163

1. Poll the BUSY bit in the VC Table Access Control Register until its value is 0.
This indicates that the VC RAM is ready to perform an access.

2. Write to the VC Table Access Control Register with the following settings:

• RWB = 1,

• CC_CLRONRD, AC_CLRONRD, NCC_CLRONRD set depending
on the application for optional clearing of the Cell Count, Alternate
Cell Count, and Non-Compliant Cell Count fields

• VCRA[15:0] set to address of the VC Table Record that will be read

This will initiate the VC RAM read cycle and assert the BUSY bit.

3. Poll the BUSY bit in the VC Table Access Control Register until its value is 0.
This indicates that the specified VC Table Record has been read and the data
in the VC Table Data Registers has been updated.

4. Check that the DRAM_CRC_ERR bit in the VC Table Access Control Register
is set to logic 0. If the DRAM_CRC_ERR is logic 1 then an error during the
memory access and the data in the VC Table Data Registers may be invalid.

5. Read the VC Table Data Registers as desired.

7.3.2 Writing VC Table Records

The procedure to write a VC Table Record to a specified VCRA is as follows:

1. Poll the BUSY bit in the VC Table Access Control Register until its value is 0.
This indicates that the VC RAM is ready to perform an access.

2. Write the desired values to the VC Table Data Registers. Only the fields that
will be not be write protected need to be written. Write protection is controlled
on per-field basis in the VC Table Write Enable Registers.

3. Write the desired bits in the VC Table Write Enable Registers to select which
fields will be written to the VC Table Record. Fields that have their enable bit
set to logic 1 will be written with the value in the VC Table Data Register and
those with their enable bit set to logic 0 will remain unchanged.

NOTE: Ensure that the Reserved [20] bit in VC Table Write Enable 1 Register is
always set to logic 0.

4. Write to the VC Table Access Control Register with the following settings:

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 164

• RWB = 0,

• VCRA[15:0] set to address of the VC Table Record that will be
written

This will initiate the VC RAM write cycle and assert the BUSY bit. When the
BUSY bit is deasserted the VC Table Record has been written.

7.3.3 Example Routines

7.3.3.1 vcRecordTableWrite

This routine writes a VC Table Record to the specified address. The information
in the VC Table Record data structure is written to the indirect data registers.

Inputs: vcra : VC Record Address of the VC Table Record
that will be written

vcRecordTable : pointer to a VC Table Record structure that will
be written to memory

Outputs: (none)

Pseudocode:

UINT1 vcRecordTableWrite(
UINT2 vcra,
sVC_RECORD_TABLE *vcRecordTable)

{
UINT4 vcRecordTableRaw[4][7]
UINT4 controlWord
UINT1 row
UINT1 word

/*ensure BUSY bit is low*/
regPollBitLow(REG_VC_TABLE_ACCESS_CTL, BTMSK_VC_ACCESS_CTL_BUSY)

/* serialize the fields in the VC Table Record data structure */
/* to the format that is used in the actual VC Table Record in */
/* the ATLAS-3200 */
serializeVcRecordTable(vcRecordTable, vcRecordTableRaw)

/* load the data registers */

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 165

for row = 0 to 6
for word = 0 to 3

regWrite(REG_VC_TABLE_DATA + (row*4) + word,
vcRecordTableRaw[word,row])

next word
next row

/* set the write enables */
regWrite(REG_VC_TABLE_WRITE_EN1, /*desired write enable value*/)
regWrite(REG_VC_TABLE_WRITE_EN2, /*desired write enable value*/)

/* write to control register to initiate the write */
controlWord = (vcra & BTMSK_VC_ACCESS_CTL_VCRA) /* RWB will be 0 */
regWrite(REG_VC_TABLE_ACCESS_CTL, controlWord)

/* check if a DRAM Error occurred */
controlWord = regRead(REG_VC_TABLE_ACCESS_CTL)
if (controlWord && BTMSK_VC_ACCESS_CTL_DRAMERR =

BTMSK_VC_ACCESS_CTL_DRAMERR) then
return FAILURE

end if

return SUCCESS
}

7.3.3.2 vcRecordTableRead

This routine reads a VC Table Record from the specified address. A VC Table
Record data structure is filled with the data read from the indirect data registers.

Inputs: vcra : VC Record Address of the VC Table Record
that will be read

vcRecordTable : pointer to a VC Table Record structure that will
be filled with the data that was read

Outputs: (none)

Pseudocode:

UINT1 vcRecordTableRead(
UINT2 vcra,
sVC_RECORD_TABLE *vcRecordTable)

{

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 166

UINT4 vcRecordTableRaw[4][7]
UINT4 controlWord
UINT1 row
UINT1 word

/* ensure BUSY bit is low */
regPollBitLow(REG_VC_TABLE_ACCESS_CTL, BTMSK_VC_ACCESS_CTL_BUSY)

/* write to control register to initiate the read */
controlWord = (vcra & BTMSK_VC_ACCESS_CTL_VCRA) |

(BTMSK_VC_ACCESS_CTL_RWB) |
/* optionally set clear on read bits if desired */

regWrite(REG_VC_TABLE_ACCESS_CTL, controlWord)

/* wait for transfer to complete */
regPollBitLow(REG_VC_TABLE_ACCESS_CTL, BTMSK_VC_ACCESS_CTL_BUSY)

/* check if DRAM Error occurred */
controlWord = regRead(REG_VC_TABLE_ACCESS_CTL)
if (controlWord && BTMSK_VC_ACCESS_CTL_DRAMERR =

BTMSK_VC_ACCESS_CTL_DRAMERR) then
return FAILURE

end if

/* load the raw VC Table Record array with data registers values */
for row = 0 to 6

for word = 0 to 3
vcRecordTableRaw[word,row]) = regRead(REG_VC_TABLE_DATA +

(row*4) + word)
next word

next row

/* convert the raw VC Table Record data into field values for the */
/* microprocessor’s VC Table Record data structure */
convertVcRecordTable(vcRecordTableRaw, vcRecordTable)

return SUCCESS
}

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 167

7.4 SDQ Entry Interfacing

Access to the three Scaleable Data Queues (SDQs) is provided indirectly
through the registers listed in Table 56. Each SDQ has 48 FIFO configuration
entries that correspond to each of the 48 PHYs. The entries are addressed by
specifying the PHY ID of the entry that will be accessed. The bits in the Indirect
Address Register, as described in Table 57, control the indirect access cycle.

This section describes the algorithms for reading and writing a FIFO
configuration entry using the indirect access registers. The algorithms apply to
all three SDQs.

When reconfiguring the SDQ while traffic is passing through, all FIFOs that are
being affected by the reconfiguration should be disabled and flushed, and held
that way until the reconfiguration is complete. FIFOs unaffected by the
reconfiguration will continue to carry traffic normally.

Table 56 - Registers for SDQ Entry Indirect Programming

Input SDQ Registers Output SDQ Registers Bypass SDQ Registers Description

Input SDQ Indirect
Address (0x244)

Output SDQ Indirect
Address (0x2A4)

Bypass SDQ Indirect
Address (0x2C4)

Indirect access control bits and
physical ID address. The physical ID
addresses the per-PHY FIFO data
accessed by the other Indirect
registers.

Input SDQ Indirect
Configuration (0x245)

Output SDQ Indirect
Configuration (0x2A5)

Bypass SDQ Indirect
Configuration (0x2C5)

FIFO configuration data to write or
read

Input SDQ Indirect
Cells and Packets
Count (0x246)

Output SDQ Indirect
Cells and Packets Count
(0x2A6)

Bypass SDQ Indirect
Cells and Packets Count
(0x2C6)

Read-only count of the number of
packets or ATM cells in the specified
FIFO.

Table 57 - SDQ Indirect Address Regs (0X244,0X2A4,0X2C4)

Bit Name Description

31:16 Unused Always set to logic 0 when writing. Read value is
undefined.
0 : Indicates PHY Mapping Table is available for

an access and value in the Data register is
stable.

15 BUSY

1 : Indicates a PHY Mapping Table Access
request is pending. Do not initiate another
request or read the Data register.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 168

Bit Name Description

0 : Write request initiated when this is written.14 RWB

1 : Read request initiated when this is written.

0 : Writes to this register will not affect FIFO
data.

13 FLUSH

1 : Writes to this register will to cause the FIFO
addressed by the PHY_ID[5:0] to discard all
cells or packets in it. The FIFO will then be
empty. Use this before re-configuring a FIFO.

0 : Indicates the FIFO addressed by the
PHY_ID[5:0] field contains at least one cell or
packet.

12 EMPTY

1 : Indicates the FIFO addressed by the
PHY_ID[5:0] field is empty.

11:6 Unused Always set to logic 0 when writing. Read value is
undefined.

5:0 PHY_ID[5:0] PHY ID that addresses the entry in the PHY
Mapping Table that will be accessed.

7.4.1 Reading SDQ Entries

The procedure to read the entry for a given physical connection from an SDQ is
as follows:

1. Poll the BUSY bit in the SDQ Indirect Address Register until its value is 0.
This indicates that the SDQ is ready to perform an access.

2. Write to the SDQ Indirect Address Register with the following settings:

• RWB set to logic 1

• FLUSH set to logic 0

• PHYID[5:0] set to the desired physical connection index

This will initiate the SDQ read cycle and assert the BUSY bit.

3. Poll the BUSY bit in the SDQ Indirect Address Register until its value is 0.
This indicates that the SDQ is has completed the read cycle and the data in
the indirect registers have been updated.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 169

4. Read the SDQ Indirect Configuration Register, SDQ Indirect Buffer and Data
Available Thresholds Register, and Input SDQ Indirect Cell/Packet Count
Register as desired.

7.4.2 Writing SDQ Entries

The procedure to write an entry for a given physical connection to an SDQ is as
follows:

1. Poll the BUSY bit in the SDQ Indirect Address Register until its value is 0.
This indicates that the SDQ is ready to perform an access.

2. Determine the current FIFO configuration settings. If the microprocessor
does not maintain a copy of this information, obtain it by reading the current
SDQ entry as described in Section 7.4.1 Reading SDQ Entries.

3. Disable the current FIFO by writing the to the SDQ Indirect Configuration
Register with the following settings.

• FIFO_PTR, FIFO_SIZE, FIFO_TYPE set to the current settings

• FIFO_ENBL bit set to logic 0. Setting the Enable bit to 0 will
ensure that no cells arrive in the FIFO while it is being configured.

Then write to the SDQ Indirect Address Register with the following settings:

• RWB bit set to logic 0

• FLUSH bit set to logic 1

• PHYID[5:0] set to the desired physical connection index

4. Poll the BUSY bit in the SDQ Indirect Address Register until its value is 0.

5. Configure and enable the new FIFO settings by writing to the SDQ Indirect
Configuration Register with the following settings:

• FIFO_PTR, FIFO_SIZE, FIFO_TYPE set to the desired settings for
the new FIFO.

• FIFO_ENBL bit set to logic 1

Then write to the SDQ Indirect Address Register with the following settings:

• RWB bit set to logic 0

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 170

• FLUSH bit set to logic 0

• PHYID[5:0] set to the desired physical connection index

This will write the Enable bit from the Configuration Register and clear the
Flush bit so that the FIFO will be enabled and ready to receive cells. When
the BUSY bit is deasserted the SDQ access is complete.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 171

7.5 PM Table Record Interfacing

Access to the Performance Management (PM) Tables in the two PM Table Banks
is provided indirectly through the registers listed in Table 58. Each PM Table
Bank has 256 PM Table Records that are addressed by specifying the index of
the PM Table Record and by specifying the Bank in which it is located. The bits in
the Control Register, as described in Table 59, control the indirect access cycle.

This section describes the algorithms for reading and writing a PM Table Record
using the indirect access registers.

Table 58 - Registers for PM Table Indirect Accessing

Register Address Description

Performance Management RAM
Record Address, Word Select
and Access Control

0x170 Address field and control bits

Performance Management RAM
Row 0 Word 0 (LSW)

0x171

Performance Management RAM
Row 0 Word 1

0x172

Performance Management RAM
Row 0 Word 2 (MSW)

0x173

… (continues for Rows 1 to 6) …
Performance Management RAM
Row 7 Word 0 (LSW)

0x186

Performance Management RAM
Row 7 Word 1

0x187

Performance Management RAM
Row 7 Word 2 (MSW)

0x189

Data registers corresponding
to the rows of a PM Table
Record. Write to these
registers before initiating a PM
Table Write, or read them after
completing a PM Table Read.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 172

Table 59 - PM Word Select and Access Control Reg (0x170)

Bit Name Description

31:25 Unused Always set to logic 0 when writing. Read value
is undefined.
0 : Access to PM Table Record in PM Bank 124 PM Bank

1 : Access to PM Table Record in PM Bank 2

23:16 PM Addr [7:0] Index of PM Table Record that will be accessed
within the selected bank
0 : Write request initiated when this is written.15 RWB

1 : Read request initiated when this is written.

0 : Indicates PM RAM available for access and
values in the Data registers are stable.

14 BUSY

1 : PM RAM access request is pending. Do
not initiate another request or read the Data
registers.

13:9 ClrOnRd_Row[7:3] Bitmap specifying which rows to automatically
clear following a Read access. Rows 0,1, and 2
cannot be automatically cleared following a
read.

8:1 Wr_PM_Row[7:0] Bitmap specifying a write mask for Rows 7 to 0.
Only Rows with bit set to 1 will be altered during
a read. The Config field in Row 0 is
independently write protected by the
Wr_PM_Config bit.
0 : PM Configuration & Status field in Row 0

will be left unchanged after a Write access.
0 Wr_PM_Config

1 : PM Configuration & Status field will be
written during Write access. This bit can be
used to re-configure the PM Table Record
without changing any of the current counter
values.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 173

7.5.1 Reading PM Table Records

The general procedure to use the indirect registers to read a PM Table Record is
as follows:

1. Poll the BUSY bit in the PM Control Register (0x170) until its value is 0. This
indicates that the PM RAM is ready to perform an access.

2. Write to the PM Control Register (0x170) with the following settings:

• RWB set to logic 1

• ClrOnRd_Row[7:3] set so that the desired rows will be cleared

• PM Bank and PM Addr[7:0] set to the location of the PM Table
Record that will be read

This will initiate the PM RAM read cycle and assert the BUSY bit.

3. Poll the BUSY bit in the PM Control Register (0x170) until its value is 0. This
indicates that the specified PM Table Record has been read and the data in
the PM RAM Row Registers has been updated.

4. Read the PM RAM Row Registers as desired.

7.5.2 Writing PM Table Records

The general procedure to use the indirect registers to write a PM Table Record is
as follows:

1. Poll the BUSY bit in the PM Control Register (0x170) until its value is 0. This
indicates that the PM RAM is ready to perform an access.

2. Write the desired values to the PM RAM Row Registers. Only the locations
that will be not be write protected need to be written. The write protection is
controlled on per-row basis except for the PM Configuration & Status field in
Row 0 which has the independent write mask bit.

3. Write to the PM Control Register (0x170) with the following settings:

• RWB set to logic 0

• Write mask fields set to logic 1 for fields that are desired to be
written to. Note that the Wr_PM_Config bit supercedes the value of

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 174

Wr_PM_Row[0], so the PM Configuration & Status field can be
programmed independently.

• PM Bank and PM Addr[7:0] set to the location of the PM Table
Record that will be written to

This will initiate the PM RAM write cycle and assert the BUSY bit. When the
BUSY bit is deasserted the PM Table Record has been written.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 175

7.6 PHY ID Mapping Table Interfacing

Access to the entries in the two PHY ID Mapping Tables is provided indirectly
through the registers listed in Table 60. Each PHY ID Mapping Table has 48
entries that correspond to each of the 48 PHYs. The entries are addressed by
specifying the PHY ID of the entry that will be accessed. The bits in the Indirect
Address Register, as described in Table 61, control the indirect access cycle.

This section describes the algorithms for reading and writing a PHY Mapping
Table entry using the indirect access registers. The algorithms apply to all both
PHY Mapping Tables.

Table 60 - Registers for PHY Map Indirect Accessing

TxL Registers RxL Registers Description

TxL PHY Indirect
Address (0x288)

RxL PHY Indirect
Address (0x208)

Address and control bits. See Table
52.

TxL PHY Indirect
Data (0x289)

RxL PHY Indirect
Data (0x209)

Value of the mapped PHY ID that will
be written or has been read.

Table 61 - PHY Indirect Address Register (0x209, 0x289)

Bit Name Description

31:16 Unused Always set to logic 0 when writing. Read value is
undefined.
0 : Indicates PHY Mapping Table is available for

an access and value in the Data register is
stable.

15 BUSY

1 : Indicates a PHY Mapping Table Access
request is pending. Do not initiate another
request or read the Data register.

0 : Write request initiated when this is written.14 CONFIG_RWB

1 : Read request initiated when this is written.

13:6 Unused Always set to logic 0 when writing. Read value is
undefined.

5:0 PHY_ADDR[5:0] PHY ID that addresses the entry in the PHY
Mapping Table that will be accessed.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 176

7.6.1 Reading PHY ID Mapping Table Entries

1. Poll the BUSY bit in the PHY Indirect Address Register until its value is 0.
This indicates that the PHY Mapping Table is ready to perform an access.

2. Write to the PHY Indirect Address Register with the following settings:

• CONFIG_RWB bit set to logic 1

• PHY_ADDR[5:0] set to the desired physical connection ID

This will initiate the PHY Mapping Table read cycle and assert the BUSY bit.

3. Poll the BUSY bit in the PHY Indirect Address Register until its value is 0.
This indicates that the PHY Mapping Table RAM has completed the read
cycle and the PHY Mapping Table entry for is copied into the.

4. Read the PHY Indirect Data Register.

7.6.2 Writing PHY ID Mapping Table Entries

The procedure to write the PHY Mapping Table entry for a given physical
connection is as follows. This algorithm applies to both the TxL and RxL Mapping
Table by using either the TxL registers or the RxL registers.

1. Poll the BUSY bit in the PHY Indirect Address Register until its value is 0.
This indicates that the PHY Mapping Table is ready to perform an access.

2. Write the desired PHY Mapping Table entry value to the PHY Indirect Data
Register.

3. Write to the PHY Indirect Address Register with the following settings:

• CONFIG_RWB bit set to logic 0

• PHY_ADDR[5:0] set to the desired physical connection ID

This will initiate the PHY Mapping Table read cycle and assert the BUSY bit.
When the BUSY bit is deasserted the PHY Mapping Table write is complete.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 177

7.7 PHY Polcing RAM Interfacing

Access to the Per-PHY Policing Configuration Tables in the Per-PHY Policing
RAM is provided indirectly through the registers listed in Table 62. The Per-PHY
Policing RAM has 48 PHY Policing Configuration Tables that correspond to each
of the 48 PHYs. The entries are addressed by specifying the PHY ID of the
configuration table that will be accessed. The bits in the PHY Policing RAM
Address and Access Control Register, as described in Table 63, control the
indirect access cycle.

This section describes the algorithms for reading and writing a Per-PHY Policing
Configuration Table using the indirect registers.

Table 62 - Registers for PHY Policing RAM Indirect Access

Register Address Description

PHY Policing RAM
Address and Access
Control

0x144 Address and control bits.

PHY Policing RAM Data
Row 0

0x145 Read or write data for per-PHY
Policing RAM row 0.

PHY Policing RAM Data
Row 1

0x146 Read or write data for per-PHY
Policing RAM row 1.

PHY Policing RAM Data
Row 2

0x147 Read or write data for per-PHY
Policing RAM row 2.

PHY Policing RAM Data
Row 3

0x148 Read or write data for per-PHY
Policing RAM row 3.

Table 63 - PHY Policing RAM Access Control Reg (0x144)

Bit Name Description

31:19 Unused Always set to logic 0 when writing. Read
value is undefined.
0 : Write request initiated when this is

written.
18 RWB

1 : Read request initiated when this is
written.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 178

Bit Name Description

0 : Indicates PHY Policing RAM is available
for an access and values in the Data
registers are stable.

17 BUSY

1 : Indicates a PHY Policing RAMAccess
request is pending. Do not initiate
another request or read the Data
registers.

0 : PHY Policing RAM entry is unchanged
after a read.

16 CLRONRD

1 : After a read access, the Alternate Cell
Count fields of the VC Table are written
to all 0’s and the VC Table’s CRC is
updated.

15 WR_PHYCONFIG
14 WR_PHYNONCOMP3
13 WR_PHYNONCOMP2
12 WR_PHYNONCOMP1
11 WR_RESERVED
10 WR_PHYI
9 WR_PHYL
8 WR_PHYTAT

Write masks for selected fields in the PHY
Policing RAM. Set bit to logic 1 to prevent the
associated field(s) from being changed during
a write access.

7:6 Unused Always set to logic 0 when writing. Read
value is undefined.

5:0 PHY_ADDR[5:0] PHY ID that addresses the entry in the PHY
Mapping Table that will be accessed.

7.7.1 Reading PHY Policing Configuration Tables

The procedure to read the PHY Policing Configuration Table for a given physical
connection is as follows:

1. Poll the BUSY bit in the PHY Policing RAM Address and Access Control
Register until its value is 0. This indicates that the PHY Policing RAM is ready
to perform an access.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 179

2. Write to the PHY Policing RAM Address and Access Control Register with the
following settings:

• RWB bit set to logic 1

• PHYAddr[5:0] set to the desired physical connection ID

This will initiate the PHY Policing RAM read cycle and assert the BUSY bit.

3. Poll the BUSY bit in the PHY Policing RAM Address and Access Control
Register until its value is 0. This indicates that the PHY Policing RAM is has
completed the read cycle and the data from the Internal Per-PHY Policing
RAM is copied into the PHY Policing RAM Data Row registers 0, 1, 2 and 3.

4. Read the PHY Policing RAM Data Row registers 0, 1, 2 and 3 as desired.

7.7.2 Writing PHY Policing Configuration Tables

The procedure to write the PHY Policing Configuration Tables for a given
physical connection is as follows:

1. Poll the BUSY bit in the PHY Policing RAM Address and Access Control
Register until its value is 0. This indicates that the PHY Policing RAM is ready
to perform an access.

2. Write the appropriate values to PHY Policing RAM Data Row registers 0, 1, 2
and 3.

NOTE: If this is the initial setup then ensure that the following fields of the
Internal PHY Policing RAM table are set to zero: PhyTAT LSB, Reserved,
PhyTAT MSB, Phy Non-Compliant2, Phy Non-Compliant1, Phy Non-
Compliant3.

3. Write to the PHY Policing RAM Address and Access Control Register with
the following settings:

• RWB bit set to logic 0

• PHYAddr[5:0] set to the desired physical connection ID

• Write mask fields set to logic 1 for fields that are desired to be
written to.

This will initiate the PHY Policing RAM write cycle and assert the BUSY bit.
When the BUSY bit is deasserted the PHY Policing RAM access is complete.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 180

NOTE: If this is the initial setup then ensure that the masks for the fields
mentioned in Step 2 are set to one. If this is not the initial setup then ensure
that the write mask bits Wr_PhyTAT and Wr_Reserved are set to zero to
prevent writing of the PhyTAT MSB, PhyTAT LSB, and Reserved fields.

7.7.3 Initializing Per-PHY Policing

Initialize the global settings that are shared between all the physical connection
policing operations as follows:

1. Disable the per-PHY policing for all physical connections by writing zeroes to
the PHY Policing Enable 1 Register and the PHY Policing Enable 2 Register.

2. Write the four GCRA configurations to the PHY Policing Configuration
Register. Each PHY Policing instance will choose from one of these.

3. Write the three non-compliant cell count configurations to the Per-PHY Non-
Compliant Cell Counting Configuration Register.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 181

7.8 PHY Count Interfacing

Access to the cell count entries in the PHY Count RAM is provided indirectly
through the registers listed in Table 64. The PHY Count RAM is read-only and
has 48 sets of count entries that correspond to each of the 48 PHYs. The
entries are addressed by specifying the PHY ID of the entry that will be
accessed. The bits in the Per-PHY Control Register, as described in Table 65,
control the indirect access cycle.

This section describes the algorithms for reading the cell counts for a given PHY
using the indirect access registers.

Table 64 - Registers for PHY Policing RAM Indirect Access

Register Address Description

Per-PHY Counter Control 0x1A1 Address and control bits.
See Table 65.

Per-PHY CLP0 Cell Count Holding
Register

0X1A8

Per-PHY CLP1 Cell Count Holding
Register

0X1A9

Per-PHY Valid RM Cell Counts Holding
Register

0X1AA

Per-PHY Valid OAM Cell Counts
Holding Register

0X1AB

Per-PHY Errored OAM/RM Cell Counts
Holding Register

0X1AC

Per-PHY Invalid VPI/VCI/PTI Cell
Counts Holding Register

0X1AD

Per-PHY EFCI/Non-Zero GFC Cell
Count Holding Register

0X1AE

Per-PHY Timed-Out Cell Count Holding
Register

0X1AF

Per-PHY Lsat Unknown VPI & VCI
Holding Register

0X1B0

Data registers that are
loaded with the per-PHY
counts after a read is
initiated by the Per-PHY
Counter Control Register.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 182

Table 65 - Per-PHY Counter Control Register (0x1A1)

Bit Name Description

31:18 Reserved Always set to logic 0 when writing. Read
value is undefined.
0 : Write request initiated when this is

written.
17 RWB

1 : Read request initiated when this is
written.

0 : Indicates the PHY Counts are available
for an access and values in the Holding
registers are stable.

16 BUSY

1 : Indicates a PHY Counts request is
pending. Do not initiate another
request or read the Holding registers.

15 CLP0_CLRONRD
14 CLP1_CLRONRD
13 RM_CLRONRD
12 OAM_CLRONRD
11 INVOAMRM_CLRONRD
10 INVAL_CLRONRD
9 NZGFC_CLRONRD
8 TO_CLRONRD

Clear On Read bits for each of the PHY
Count data registers. selected fields in the
PHY Policing RAM. Each bit can be set
individually as follows:
Set to logic 0 to cause the associated Count
Data register to be remain unchanged after
a read accessed is performed.
Set to logic 1 to cause the associated Count
Data register to be written to all ‘0’s after a
read accessed is performed.

7:6 Reserved Always set to logic 0 when writing. Read
value is undefined.

5:0 PHYID[5:0] Specifies the PHY for which the counts will
be accessed.

7.8.1 Reading Per-PHY Cell Counts

The procedure to read the Per-PHY Cell Counts for a given physical connection
is as follows:

1. Poll the BUSY bit in the Per-PHY Counter Control Register until its value is 0.
This indicates that the Per-PHY Counters are ready to perform a read.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 183

2. Write to the Per-PHY Counter Control Register with the following settings:

• RWB bit set to logic 1

• Clear on read bits set to logic 1 for all fields that are desired to be
cleared.

• PHY_ADDR[5:0] set to the desired physical connection ID

This will initiate the Per-PHY Counter read cycle and assert the BUSY bit.

3. Poll the BUSY bit in the Per-PHY Counter Control Register until its value is 0.
This indicates that the read cycle has completed and all the Cell Counts
Holding Registers contain the valid count values.

4. Read the Cell Counts Holding registers as desired.

7.8.2 Writing Per-PHY Cell Counts

The procedure to write the Per-PHY Cell Counts for a given physical connection
is as follows:

1. Poll the BUSY bit in the Per-PHY Counter Control Register until its value is 0.
This indicates that the PHY Mapping Table is ready to perform an access.

2. Write the desired cell count values into the Cell Count Holding registers.
Note that all of the registers will be written.

3. Write to the Per-PHY Counter Control Register with the following settings:

• RWB bit set to logic 0

• PHY_ADDR[5:0] set to the desired physical connection ID

This will initiate the Per-PHY Counter read cycle and assert the BUSY bit.
When the BUSY bit is deasserted the Per-PHY Cell Counts register write is
complete.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 184

7.9 Calendar Entry Interfacing

Access to the entries in the three Calendar data structures is provided indirectly
through the registers listed in Table 66. Each Calendar Table has 128 entries
that are addressed by specifying the index number. The bits in the Calendar
Indirect Address and Data Register, as described in Table 67, control the indirect
access cycle and contain the data field.

This section describes the algorithms for reading and writing a Calendar entry
using the indirect registers. The algorithms apply to all three Calendars.

Table 66 - Registers for Calendar Entry Access

Register Address Description

RxL Calendar Indirect Address
and Data

(0x20B)

RxP Calendar Indirect Address
and Data

(0x265)

TxL Calendar Indirect Address
and Data

(0x28B)

Indirect address field, data
field, busy bit and read write
bit. Calendar entries
programmed indirectly through
this register.

Table 67 - Calendar Addr. and Data Reg.(0x20B, 0x265, 0x28B)

Bit Name Description

31:16 Unused Always set to logic 0 when writing. Read
value is undefined.
0 : Indicates PHY Policing RAM is

available for an access and values in
the Data registers are stable.

15 BUSY

1 : Indicates a PHY Policing RAMAccess
request is pending. Do not initiate
another request or read the Data
registers.

14:8 CALENDAR_ADDR[6:0] Index that addresses the entry in the
Calendar that will be accessed.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 185

Bit Name Description

0 : Write request initiated when this is
written.

7 CONFIG_RWB

1 : Read request initiated when this is
written.

6 Unused Always set to logic 0 when writing. Read
value is undefined.

5:0 CALENDAR_DATA[5:0] Data that will be written to or has been read.

7.9.1 Reading Calendar Entry

The Calendar entries are accessed by specifying the index of the calendar table
in the CALENDAR_ADDR[6:0] field of the Indirect Address and Data.

The general procedure to read a Calendar entry is as follows:

1. Poll the BUSY bit in the Calendar Indirect Address and Data Register until its
value is 0. This indicates that the Calendar is ready to perform an access.

2. Write to the Calendar Indirect Address and Data Register with the following
settings:

• CONFIG_RWB set to logic 1

• CALENDAR_ADDR[6:0] set to the table index to be read

This will initiate the Calendar read cycle and assert the BUSY bit.

3. Poll the BUSY bit in the Calendar Indirect Address and Data Register until its
value is 0. This indicates that the SDQ is has completed the read cycle and
the value of CALENDAR_DATA[5:0] is valid.

7.9.2 Writing Calendar Entry

The general procedure to write a Calendar entry is as follows:

1. Poll the BUSY bit in the Calendar Indirect Address and Data Register until its
value is 0. This indicates that the Calendar is ready to perform an access.

2. Write to the Calendar Indirect Address and Data Register with the following
settings:

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 186

• CONFIG_RWB set to logic 0

• CALENDAR_ADDR[6:0] set to the table index to be written

• CALENDAR_DATA[5:0] set the PHY ID that to write to that entry

This will initiate the Calendar read cycle and assert the BUSY bit. When the
BUSY bit is deasserted the Calendar Entry access is complete.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 187

7.10 MCIF Interfacing

Access to ATM cells in the two Microprocessor Cell Interfaces (MCIF) is provided
indirectly through the registers listed in Table 68. The Input Microprocessor Cell
Interface (IMCIF) contains a one ATM cell buffer and the Output Microprocessor
Cell Interface has a FIFO that holds 16 ATM cells. The cells are stored as 64
byte entries that are accessed sequentially through the Microprocessor Cell Data
Register. One access operation transfers 4 bytes, so to transfer an entire cell 16
read or write operations are required. Data transfers are completed during one
clock cycle, therefore there is no BUSY signal for the MCIF interface. The bits in
the Microprocessor Cell Interface Control and Status Register described in Table
69 control the insertion of cells into the IMCIF, and the bits described in Table 70
control the extraction of cells from the OMCIF.

This section describes the algorithms for reading and writing an ATM cell using
the indirect access registers.

Table 68 - Registers for MCIF Interfacing

Register Address Description

Microprocessor Cell Interface
Control and Status Register

(0x020) Control bits.

Microprocessor Cell Data
Register

(0x021) Indirect data register.

Table 69 - MCIF Control and Status Reg(0x020) Insert Bits

Bit Name Description

31:27 Unused Always set to logic 0 when writing. Read value is
undefined.
0 : Indicates PHY Policing RAM is available for an

access and values in the Data registers are
stable.

26 INSRDY

1 : Indicates a PHY Policing RAMAccess request is
pending. Do not initiate another request or read
the Data registers.

0 : Write request initiated when this is written.25 WRSOC

1 : Read request initiated when this is written.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 188

Bit Name Description

24:19 PHY_ID[5:0] Specifies the PHY ID that will be associated with the
cell that is inserted. If PROC_CELL is set to logic 1
this PHY ID will used to construct the routing word for
the search tree lookup in the cell processor. If
PROC_CELL is set to logic 0 the cell will be inserted
directly into the output stream of this PHY.
0 : The cell written to the IMCIF will be sent cell

directly to the Output Cell Interface without being
processed.

18 PROC_CELL

1 : The cell written to the IMCIF will be inserted into
the cell stream as if it had come from the Input
Cell Interface. The cell will be handled by the cell
processor in the same manner as all other cells
coming from the ICIF.

0 :17 CRC10

1 : The last 10 bits of the inserted cell will be
replaced by a CRC code. This bit must be set
during all the 16 indirect writes used to assemble
the cell. Typically the last 2 bytes (16 bits) of the
cell should be written to zero, and the CRC will
replace the 10 least significant bits.

0 : IMCIF operates normally0 INSRST

1 : IMCIF in reset state. The cell insertion FIFO is
cleared, and writes to the FIFO will have no
effect.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 189

Table 70 - MCIF Control and Status Reg(0x020) Extract Bits

Bit Name Description

15:6 Unused Always set to logic 0 when writing. Read value is
undefined.
0 : Indicates the Microprocessor Cell Data Register

does not contain the first word of a cell.
5 RSOC

1 : Indicates that the Microprocessor Cell Data
Register currently contains the first word of a cell.
Check this bit at the beginning of a read cycle to
ensure that the first word is being read.

0 : Indicates that there are no cells in the OMCIF.
The transition from 1 to 0 is caused when the last
word of the last cell in the OMCIF is read.

4 EXTCA

1 : Indicates that there is at least one complete cell in
the OMCIF. The transition from 0 to 1 is caused
when the OMCIF is empty and receives the last
byte of the first cell. This bit sets the UPCAI bit in
the Master Interrupt Status #1 Register (0x002)
which can be used for interrupt driven waiting for
cell arrivals.

3 ABORT Set to logic 1 to discard the current cell in the OMCIF.
If there is another cell in the OMCIF, the next cell will
become available and the cell read pointer will be reset
to the first word.

2 RESTART Set to logic 1 to reset the cell read pointer in the
OMCIF to the first word of the current cell. Cells are
not discarded from the OMCIF FIFO until the last word
has been read, so when this is set the current cell will
not be affected and the 16 word read sequence can
begin again.
0 : External signal UP_DMAREQ is active high.1 DMAREQINV

1 : External signal UP_DMAREQ is active low.

0 : OMCIF operates normally0 EXRST

1 : OMCIF in reset state. The cell extraction FIFO is
cleared, and no cells are accepted.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 190

7.10.1 Reading Cells

The operation to read a cell will typically be called when the software has
detected that a cell is available using one of the methods described in section
6.8.1. To read the next available cell from the OMCIF FIFO, use the following
procedure:

1. Check that the EXTCA bit is logic 1. Do not proceed if the EXTCA bit logic 0.

2. Write to the Microprocessor Cell Interface Control and Status Register with
the following settings:

• RESTART = 0

This initiates a read from the OMCIF that will continue for 16 successive read
operations from the Microprocessor Cell Data Register

3. Read the Microprocessor Cell Interface Control and Status Register and
confirm that RSOC is logic 1. This indicates that the data word in the
Microprocessor Cell Data Register is the first word of the cell.

4. Read the Microprocessor Cell Data Register 16 times to read all the words of
the cell. The first word read is the first word of the cell and each subsequent
word increments sequentially through the cell as specified in the Data Sheet
[1].

7.10.2 Writing Cells

To write a cell to the IMCIF FIFO, use the following procedure:

1. Check that the INSRDY bit is logic 1. Do not proceed if INSRDY is logic 0.

2. Write to the Microprocessor Cell Interface Control and Status Register with
the following settings:

• RESTART = 0

• WRSOC = 1

• CRC10, PROC_CELL, PHYID[5..0] = application specific values

Setting RESTART initiates a write to the IMCIF that will continue for 16
successive write operations to the Microprocessor Cell Data Register

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 191

3. Write to the Microprocessor Cell Data Register 16 times to write all the words
of the cell. The data words are written in the sequence specified in the Data
Sheet [1].

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 192

7.11 Change of State FIFO Interfacing

Access to the entries in the Change of State (COS) FIFO is provided indirectly
through the registers listed in Table 71. The COS FIFO is read-only and has 256
entries that are accessed sequentially. Entries are written to the COS FIFO by a
background process within the ATLAS-3200. The bits in the VC Table Change of
Connection State FIFO Status Register, as described in Table 72, provide the
status bits used for reading from the FIFO.

This section describes the algorithms for reading the first entry from the COS
FIFO using the indirect access registers.

Table 71 - Registers for COS FIFO Interfacing

Register Address Description

VC Table Change of Connection
State FIFO Status

0x190 Status bits

VC Table Change of Connection
State FIFO Data

0x191 COS FIFO data register.
Automatically updated to
contain the next COS FIFO
entry after each read.

Table 72 - VC Table COS FIFO Status Register (0x190)

Bit Name Description

31:3 Unused Always set to logic 0 when writing. Read value is
undefined.
0 : Indicates that the COS FIFO is not full.2 COSFULL

1 : Indicates that the COS FIFO is full. No more
entries will be accepted and changes of state may
be missed. The microprocessor can use the
COSI, XCOSI, and COSFULLI interrupt bits in the
Master Interrupt Status #1 Register to respond to
cell levels in the COS FIFO and prevent it from
getting full.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 193

Bit Name Description

Check this bit before reading from the VC Table
Change of Connection State FIFO Data Register.
0 : The VC Table Change of Connection State FIFO

Data Register does not contain valid data. This
may be due to the COS FIFO being empty or due
to a read access of the next entry still in progress.

1 COSVALID

1 : There is a valid entry COS FIFO in the VC Table
Change of Connection State FIFO Data Register.
and it may be read.

Poll this bit to determine when the COSVALID is valid
and can checked
0 : The COSVALID bit is valid.

0 COSBUSY

1 : Indicates that the COS FIFO read pointer is being
updated and the value of COSVALID is not valid.

7.11.1 Reading COS Entries

The operation to read a COS FIFO entry will typically be called when the
software has detected that the FIFO is not empty by servicing one of the COS
FIFO interrupts described in Section 6.9.1.

To read the next entry from the COS FIFO, use the following procedure:

1. Poll the COSBUSY bit in the VC Table Change of Connection State FIFO
Status Register until its value is logic 0. This indicates that the COS FIFO has
updated its read pointer.

2. Poll the COSVALID bit in the VC Table Change of Connection State FIFO
Status Register until its value is 0. This indicates that the VC Table Change of
Connection State FIFO Data register contains a valid COS FIFO entry.

3. Read the VC Table Change of Connection State FIFO Data Register to get
the COS FIFO entry. If the COS FIFO contains subsequent entries then the
COSBUSY bit will be asserted and the COS FIFO will shift its entries and
load the new top entry into the VC Table Change of Connection State FIFO
Data Register.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 194

7.12 Count Rollover FIFO Interfacing

Access to the entries in the Count Rollover (CRO) FIFO is provided indirectly
through the registers listed in Table 73. The CRO FIFO is read-only and has 256
entries that are accessed sequentially. Entries are only written to the CRO FIFO
by a background process within the ATLAS-3200. The bits in the VC Table
Change of Connection State FIFO Status Register, as described in Table 74,
provide the status bits used for reading from the FIFO.

This section describes the algorithms for reading the first entry from the CRO
FIFO using the indirect access registers.

Table 73 - Registers for CRO FIFO Interfacing

Register Address Description

VC Table Count Rollover FIFO Status 0x198 Status bits
VC Table Count Rollover FIFO Data 0x199 Indirect data register

Table 74 - VC Table CRO FIFO Status Register (0x198)

Bit Name Description

31:3 Unused Always set to logic 0 when writing. Read value is
undefined.
0 : Indicates that the CRO FIFO is not full.2 CRFULL

1 : Indicates that the CRO FIFO is full. No more
entries will be accepted and changes of state may
be missed. The microprocessor can use the
CROI, XCROI, and CROFULLI interrupt bits in the
Master Interrupt Status #1 Register to respond to
cell levels in the CRO FIFO and prevent it from
getting full.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 195

Bit Name Description

Check this bit before reading from the VC Table
Change of Connection State FIFO Data Register.
0 : The VC Table Change of Connection State FIFO

Data Register does not contain valid data. This
may be due to the CRO FIFO being empty or due
to a read access of the next entry still in progress.

1 CRVALID

1 : There is a valid entry CRO FIFO in the VC Table
Change of Connection State FIFO Data Register.
and it may be read.

Poll this bit to determine when the CROVALID is valid
and can checked
0 : The CROVALID bit is valid.

0 CRBUSY

1 : Indicates that the CRO FIFO read pointer is being
updated and the value of CROVALID is not valid.

7.12.1 Reading CRO Entries

The operation to read a CRO FIFO entry will typically be called when the
software has detected that the FIFO is not empty by servicing one of the CRO
FIFO interrupts described in Section 6.9.2. To read the next entry from the CRO
FIFO, use the following procedure:

1. Poll the CROBUSY bit in the VC Table Change of Connection State FIFO
Status Register until its value is 0. This indicates that the CRO FIFO has
updated its read pointer.

2. Poll the CROVALID bit in the VC Table Change of Connection State FIFO
Status Register until its value is 0. This indicates that the VC Table Change of
Connection State FIFO Data register contains a valid CRO FIFO entry.

3. Read the VC Table Change of Connection State FIFO Data Register to get
the CRO FIFO entry. If the CRO FIFO contains subsequent entries then the
CROBUSY bit will be asserted and the CRO FIFO will shift its entries and
load the new top entry into the VC Table Change of Connection State FIFO
Data Register.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 196

8 PSEUDO-CODE REFERENCE

To present the concepts as clearly as possible, the pseudo-code routines are
simplified to demonstrate only the basic functional requirements. The major
modifications required to adapt the pseudo-code to an actual code
implementation are listed below:

• Error Handling: There is limited error checking and error handling in the
pseudo-code and many of the routines do not have return values to indicate a
success or failure. The routines should be modified to check for error
conditions and return success/failure values

• Multiple Device Support: All of the pseudo-code routines are intended to
perform operations only on a single ATLAS-3200. Since typical applications
will have more than one, it may be desired to modify the routines so they can
be used for multiple devices.

For example, the regRead routine reads a register value from an ATLAS-
3200 that is assumed to be memory mapped to a constant base address.

UINT4 regRead(
UINT2 regAddr)

{
UINT4 address
UINT4 value

address = ATLAS_BASE_ADDR + regAddr
value = *(address)
return value
}

To modify this routine to accommodate multiple ATLAS-3200s memory
mapped to various locations, an additional input parameter specifying which
ATLAS-3200 device to read from can be added.

DEVICE_BASE_ADDR[] = {ATLAS1_BASE_ADDR, ATLAS2_BASE_ADDR}

UINT4 regRead(
UINT2 regAddr
UINT1 device)

{
UINT4 address
UINT4 value

address = DEVICE_BASE_ADDR[device] + regAddr

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 197

value = *(address)
return value
}

• Global Variables: Global variables are used by the pseudo-code to store the
mirror data structures. The names of global data structures are prefixed with
‘g’. The use of these data structures can be modified so that instead of
accessing them globally, pointers to the data structures are passed to each
function that requires them. This is required for functions to support multiple
devices since the microprocessor must maintain separate mirror copies for
each ATLAS-3200.

e.g.

/* Shadow copy of the Primary Search Table in the ATLAS-3200 */
/* external SRAM. */
UINT4 gPrimarySearchTable[]

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 198

9 APPENDIX A: OAM CELL DESCRIPTIONS

This appendix contains a general description of the ATM Operations and
Maintenance (OAM) cell flows. It provides background information for the OAM
Cell Management section and serves as a general reference for understanding
the OAM flow.

The OAM functions in the network are performed on five OAM hierarchical levels
associated with the ATM and physical layers of the protocol reference model.
The functions result in corresponding bidirectional information flows on five
different levels. A pictorial explanation of the levels is shown in Figure 47 below.
The levels are as follows:

F5, Virtual channel (VCC) level Extends between network elements performing
virtual channel connection termination and is
shown extending through one or more virtual
paths.

F4, Virtual path (VPC) level Extends between network elements performing
virtual path connection termination and is
shown extending through one or more
transmission path.

F3, Transmission path level Extends between network elements
assembling/disassembling the payload of a
transmission system and associating it with its
OAM functions.

F2, Digital section level Extends between section endpoints and
comprises a maintenance entity.

F1, Regenerator section level A regeneration section (e.g. usually SONET
optical interface) is a portion of a digital section
and as such is a maintenance sub-entity.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 199

Figure 47 - ATM OAM Hierarchical Levels

VCLC VCLC VCLC

Virtual channel network connection

VPLC VPLC VPLC

Virtual path network connection

AT
M

 L
ay

er
Ph

ys
ic

al
 L

ay
er

Transmission path

Digital Section

Regenerator
section

F5
Virtual

channel level

F4
Virtual

path level

F3
Transmission

path level

F2
Digital

section level

F1
Regenerator
section level

Connecting point of the corresponding level

Endpoint of the corresponding level VCLC – virtual channel link connection

VPLC – virtual path link connection

NOTE: the F5 flow does not necessarily extend beyond the end point of F4 flow.

Levels F1, F2 and F3 are physical layer (SONET) OAM flows, while F4 and F5
flows are the ATM layer OAM flows. ATM Layer OAM flows are necessary, since
a virtual connection may extend beyond the SONET network. The ATLAS-3200
only handles the F4 and F5 ATM Layer OAM flows.

F4 flows refer to OAM flows over a VPC. F5 flows refer to OAM flows over a
VCC. An OAM flow may extend over the entire connection. This is called an

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 200

end-to-end flow. An OAM flow may also cover a portion of the end to end
connection. This is called a segment flow. Therefore, there are four main types
of OAM flows:

• F4 End-to-end

• F4 Segment

• F5 End-to-end

• F5 Segment

9.1 General OAM Cell Format

Figure 48 below shows an ATM OAM Cell. The total size of any ATM Cell
(including OAM cell) is 53 octets. In the OAM cell, the forty-eight octets of the
user payload contain OAM specific data.

Figure 48 - OAM Cell Structure

VP
I

G
FC

/V
PI

VP
I

VC
I

VC
I

VC
I

CLP

PT
I

H
EC

53

Function specific field
45 octets

Octets

O
AM ty
pe

Fu
nc

tio
n

ty
pe

51 52

ED
C

 (C
R

C
-1

0)ED
C

R
es

er
ve

d

1 2 5 63 4

Header

1

8

bi
ts

Payload

The OAM cell is distinguished from a user cell by the VCI or PTI header fields.
F4 OAM cells are identified by the VCI field as highlighted in Table 75. F5 OAM
cells are identified by the PTI field as highlighted in Table 76.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 201

Table 75 - F4 OAM Cell Identification

VPI VCI Interpretation Category

0 Unassigned cell (VPI=0)
0 Unused (VPI>0)

Non-User

1 Meta-signaling cell (UNI)
2 General broadcast signaling cell (UNI)

User

3 Segment OAM F4 flow call
4 End-to-end OAM F4 flow call

Non-User

5 Point-to-point signaling cell User
6 Resource management cell
7-15 Reserved for future use.

Non-User

16-31 Reserved for future use.

same as
user cells

>31 Available for user data transmission
User

Table 76 - F5 OAM Cell Identification

VPI VCI PTI Interpretation Category

000
001

User data cell, congestion not
experienced

010
011

User data cell, congestion
experienced

User

100 Segment OAM F5 flow call
101 End-to-end OAM F5 flow call

Non-User

110 Resource management cell

same as
user cells

same as
user cells

111 Reserved for future use
Non-User

The cell payload of an OAM cell contains the OAM specific data. The first byte
of the cell payload consists of two fields that indicate the OAM cell type and OAM
function type. There are 4 cell types defined: Fault Management (FM),
Performance Management (PM), Activation/Deactivation (A/D), and System
Management (SM). For each cell type, there are several Function Types. The
OAM cell types and OAM function types are detailed in Table 77.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 202

Table 77 - OAM Cell Types and Functions

OAM Cell Type OAM Function Type Description

AIS (alarm indication signal) 0000 For reporting defect indications in the
forward direction

RDI (remote defect
indication)

0001 For reporting remote defect indications in
the backward direction

CC (Continuity check) 0100 For continuously monitoring the
availability of a link

Fault Management

(FM)

0001

LB (Loopback) 1000 For on-demand connectivity monitoring,
fault localization, and pre-service
connectivity verification

Forward Performance
Monitoring

0000 For estimating performance over a link
or segment of a link

Performance
Management

(PM)

0010

Backward reporting 0001 For reporting performance estimations on
the backward direction

Group Protection 0000 For carrying group protection switching
protocol information

Automated
Protection Switching
Coordination protocol

(APS)

0101

Individual Protection 0001 For carrying individual protection
switching protocol information

Performance Management
A/D Forward Performance
Monitoring and Backward
Reporting

0000 For activation/deactivation of PM
functionality in a standard way

Continuity check A/D 0001 For activation/deactivation of CC
functionality in a standard way

Activation/
Deactivation

(A/D)

1000

Forward monitoring A/D 0010 For activation/deactivation of FM
functionality in a standard way

System Managemen

(SM)

1111 Not specified in I.610 (1999) For use by end systems only.

Ten bits at the end of the OAM cell are dedicated to the Error Detection Code
(EDC). The EDC is calculated over the cell payload. The EDC is used protect
against erroneous decisions based on corrupted OAM cell data.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 203

9.2 Fault Management (FM) Cells

The three types of Fault Management (FM) OAM cells are shown in Figure 49.

Figure 49 - FM Cell Function Specific Fields

51

FM Cell payoad

Function specific field,
 45 octetsFu

nc
tio

n
ty

pe

7

ED
C

 (C
R

C
-1

0)

ED
C

R
es

er
ve

d

ATM (OAM)
Cell Header,

5 octets
D

ef
ec

t
Ty

pe

8 23

Defect location
(optional)
16 octets

24

Reserved for future
use (6AH)
28 octets

517

Lo
op

ba
ck

in
di

ca
tio

n

8 11

Correlation
tag

4 octets

12

Source ID
(optonal)
16 octets

0001

0000
or

0001

AIS
or

RDI

1000

0001

Loopback

6

0000000
unused
7 bits

1 - cell to be
looped back

0 - cell
coming back

Loopback
location ID
16 octets

Unused
(6A)

8 octets

43

Continuity
check Unspecified (6AH)

45 octets

OAM Cell

0100

0001

1 2 5 6 533 4
Octets

5251

O
AM ty
pe

1

8

9.2.1 AIS and RDI Cells

AIS cells are used to report defects in the downstream direction. RDI cells are
used to report defects in the upstream direction. An example of the AIS and RDI
flow is shown in Figure 50 below.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 204

Figure 50 - AIS and RDI Flow

Detection and
termination of F4

(VP) RDI Cell

Connection
failure

VPC - Virtual path network connection

VCC - Virtual channel network connection

Detection and
termination of F5

(VC) RDI Cell

Physical RDI

Detection and termination
of F4 (VP) AIS

and
Generation of F4 RDI Cell,
Generation of F5 AIS Cell

Detection and termination
of F5 (VC) AIS and

Generation of F5 RDI Cell

D

E

A B C F

F4/F5 flow only-
Detection
- Generation
- connection point

F4 End Point
F5 End Point

F4 End Point

F5 End Point

F4 AIS
OAM Cells

F5 (VCC) RDI OAM Cells

F4 (VPC) RDI OAM Cells

F5 AIS
OAM Cells

F4 Segment

F4 End Point

The example shown above has the OAM flows set as follows:

• “A” to “F” is an F5 End-to-End flow

• “B” to “E” is an F4 End-to-End flow

• “C” to “E” is a Segment F4 flow

• “D” is a connection point (non-end point to either flow).

Consider a failure between “C” and “D”. The network will react as follows:

The failure is detected at “D”. It may be detected at the physical layer or at the
ATM layer.

• “D” generates Segment and End-to-End F4 AIS cells downstream once per
second. “D” does not generate RDI nor F5 AIS, since it is not an end-point
for the F4 or F5 flows. “D” may generate physical layer RDI, if appropriate.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 205

• “E” is both a segment and end-to-end flow end point, and therefore
terminates the F4 AIS cell flow. In response to the AIS cells, “E” generates
F4 Segment and End-to-End RDI cells upstream. Additionally, since E is also
a connecting point for the F5 flow, F5 End-to-End AIS cells are sent
downstream once per second.

• “F” is end-to-end flow end point, and therefore terminates the F5 End-to-End
AIS. In response to the AIS, “F” generates F5 End-to-End RDI cells
upstream.

• “E” does not terminate the F5 End-to-End RDI generated at “F”, since it is not
an end point for the F5 OAM flow.

• “D” does not terminate OAM cells since it is not an end point.

• “C” terminates the F4 Segment RDI generated by “E”.

• “B” terminates the F4 End-to-End RDI generated by “E”.

• “A” terminates the F5 End-to-End RDI cells generated by “E”.

• “A”, “B” and “C” do not generate any OAM cells related to this connection
failure.

9.2.2 CC Cells

Continuity failures at the ATM layer are detected using Continuity Check (CC)
cells. Continuity check cells are inserted into a connection so the downstream
entity may differentiate between a loss of continuity and a period of low cell flow.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 206

Figure 51 - CC Flow

Continuity
check

Loss of continuity
state

DC

AIS state

Loss of continuity
and AIS state

Loss of
continuity

- Detection
- Generation
- Transfer

Loss of
continuity

F4 and/or F5 AIS
OAM Cell

F4 and/or F5 RDI
OAM Cell

1 2 3 4 5 6 7

Time

[sec]

User traffic Silent period

Continuity
check cell

Continuity
check cell

User traffic

Connection points (intermediate nodes) in a segment and/or end-to-end OAM
flow (F4 and F5) can be set to look for the presence of CC cells. If a lack of user
cells and CC cells is detected over 3.5 ±0.5sec, a network entity may trigger CC
alarm, which in turn may activate sending of AIS cells downstream. The CC
alarm triggered at the flow end-points may also activate sending RDI cells in
upstream direction.

9.2.3 Loopback Cells

Another type of fault management cell is the loopback cell. The intent of the
loopback cell is to determine continuity in a connection after it has been setup,
and to isolate misconfiguration problems. This is a demand service used by
network operators. Examples of loopback flows are shown in Figure 52 below.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 207

Figure 52 - Loopback Flow Examples

Loopback point,
 LI changed from

1 to 0

Loopback Cell, LI = 1

Loopback Cell, LI = 0

1 LLID SID

0 LLID SID

End-to-End
Loopback

B C D

End of
Segment

E
LLID = all 0, LI=1

LLID = B, LI=0

A

LLID = C, LI=0
LLID = D, LI=0

Loopback cell
terminated

Multiple
Loopback
technique

Domain
border

Domain
border

 The simplest use of the loopback cell is shown in the top half of Figure 52. The
loopback cell is sent from one end of the connection and looped back at the end
of the connection.

A multiple loopback technique can be used to simplify the segment diagnostic
process (as shown above). In this case the Loopback Location ID (LLID) field of
a cell generated at point “A” is filled with all 0’s. Each connection point in the
segment sends the loopback cell back with the LLID changed to that node’s ID
and loopback indicator (LI) changed to 0. The loopback cell originating point “A”
can receive, for example, three cells. If connection C↔D is broken, point A
receives only two loopback cells back (B and C). The segment loopback cell is
terminated at the segment end point (D).

9.3 Performance Management (PM) Cells

Performance Management (PM) cells are used to determine the performance of
a particular VC. PM is generally a demand service initiated by the network
operator. Two types of PM cells are defined: forward monitoring and backward
reporting. The function specific fields of the PM cell are shown in Figure 53
below.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 208

Figure 53 - PM Cell Function Specific Fields

517

MCSN
/ FPM

16 bits

Reserved for future
use (6AH)

Forw.
Mon.
0000

PM
0010

Forward Monitoring

TUC-0+1 BEDC-
0+1

TUC-0 TSTP
(optional)

517

MCSN
/ BR

Backward Reporting

TUC-0+1
Reserved

for FU
(6AH)

TUC-0
TSTP

(optional)

16 bits 16 bits8 bits 32 bits

32 bits

Reserved
for FU
(6AH)

27 octets

34 octets

RMCSN
- FM SECBC TRCC-0 BLER-

0+1
TRCC-

0+1

16 bits 16 bits 16 bits8 bits 8 bits 8 bits 16 bits 8 bits 16 bits

4 bits 4 bits

Back.
Rep.
0001

PM
0010

6

4 bits 4 bits

6

 A full description of each field is presented in I.610. A brief summary is
presented below.

Forward monitoring:

MCSN/FPM Monitoring Cell Sequence Niumber, forward PM

TUC0+1 Total User Cells, CLP0+1

BEDC0+1 Block Error Detection Code, CLP0+1

TUC0 Total User Cells, CLP0

TSTP Timestamp

Backward reporting:

MCSN/BR Monitoring Cell Sequence Niumber, Backward Monitoring
Cell

TUC0+1 Total User Cells, CLP0+1

TUC0 Total User Cells, CLP0

TSTP Timestamp

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 209

RMCSN-FM Reported Monitoring Cell Sequence Number, Forward
Monitoring Cell

SECBC Severely Errored Cell Block Count

TRCC0 Total Received Cell Count, CLP0

BLER0+1 Block Error Result, CLP0+1

TRCC0+1 Total Received Cell Count, CLP0+1

The PM cells are sent at the source point, and terminated and processed at the
sink points for segment and end-to-end flows on VPCs and VCCs. The PM cells
may also be monitored at intermediate nodes. Unlike FM flows, there is no
interaction between the F4 and F5 levels for PM flows. Figure 54 below shows
how the PM flow works. The figure applies to F4 segment, F4 end-to-end, F5
segment, and F5 end-to-end flows.

Figure 54 - Example of PM Cell Flow

A B

PM Sink PointPM Source Point

Backward Reporting Cell

Forward Monitoring Cell

PM Source PointPM Sink Point

Every n user cells (where n is the block size, defined by I.610), a forward PM cell
will be generated at the PM source point. The end point for the PM flow (the
“sink”) will terminate the PM cell, process the contents, and generate a backward
PM cell in response.

9.4 Activate / Deactivate (A/D) Cells

The Activation/Deactivation (A/D) process is use to activate and deactivate PM or
CC flow sessions through the ATM network. The advantage of the A/D process
is that it uses the same network that carries user traffic. At the same time, it may
be a major disadvantage. For instance, if a particular connection is not
performing well, it may be difficult to reliably pass A/D cells to setup a PM
session.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 210

The function specific fields of the A/D cell is shown in Figure 55 below.

Figure 55 - A/D Cell Function Specific Fields

517

Message
ID

2 bits

Reserved for future
use (6AH)

0000

0001

0010

PM A/D
or

CC A/D
or

FM A/D

Direction
of action

Correlating
tag

PM block
size B-A

PM block
size B-A

8 bits 4 bits6 bits 4 bits 336 bits

xxxxA/D
1000

6

4 bits 4 bits

A full description of each field is presented in I.610. A brief summary is
presented below.

Message ID Specifies the function of the cell. Refer to I.610 for the use
of the message ID field.

Direction of Action Identifies direction(s) of transmission.

Correlation Tag A tag generated for each message, used by nodes to
correlate commands with responses.

PM Block Size A-B Specifies the A-B block size for forward monitoring.

PM Block Size B-A Specifies the B-A block size required for backward reporting.
The PM block size is always 2N, where 7 � N � 15.

9.5 System Management (SM) Cells

The System Management cells are provided for use by end user equipment.
Their use is optional and is not recommended except for specific applications
which are not satisfied by other mechanisms.

The function specific fields of the System Management cell are shown in Figure
55.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 211

Figure 56 - System Management Cell Function Specific Fields

517

Undefined as of
Recommendation I.610 [2]

Undefined as of
Recommendation
I.610[2]

45 octets

xxxxSYS
1111

6

4 bits 4 bits

9.6 Automated Protection Switching (APS) Cells

The APS cells provide mechanisms for protection switching at the ATM layer to
protect against physical layer and ATM layer defects. They apply primarily to the
situations where a server layer protection switching does not exist

Two types of APS cells are defined: Individual and Group. Individual VP/VC
protection switching is useful to protect only a part of VPs/VCs that need high
reliability. Group protection switching facilitates fast ATM layer protection
switching for a logical bundle of VP/VC network and/or subnetwork connections.

The function specific fields of the A/D cell is shown in Figure 55 below.

Figure 57 - APS Cell Function Specific Fields

517

K1

1 octet

Reserved for future
use (6AH) 0000

 0001

Group
or

Individual

K2

1 octet 43 octets

xxxxAPS
1010

6

4 bits 4 bits

8 9

A full description of APS cell usage and the K1 and K2 fields is presented in
I.630.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 212

10 APPENDIX B: VC BINARY SEARCH TREE EXAMPLE

This appendix provides a detailed example of the use of the binary search tree.

The following example illustrates how the search could be constructed and what
happens when a cell enters the ATLAS-3200 cell processor. For this example,
we will setup the ATLAS-3200 for eight connections. Table 78 shows the
connection characteristics. We will assume that there is no prepend or
postpend, so that the connection can be uniquely identified by the cell’s header
contents and PHY ID. For simplicity, the PHY ID and VPI for each of the eight
connections is the same.

Table 78 - Example VC Characteristics

VC # VPI VCI PHY ID

1 0x005 0x00B5 0
2 0x005 0x00B0 0
3 0x005 0x008F 0
4 0x005 0x0023 0
5 0x005 0x0020 0
6 0x005 0x0017 0
7 0x005 0x0016 0
8 0x005 0x0010 0

To setup the ATLAS-3200 to support these connections, the ATLAS-3200 is
configured to use the VPI for the Primary Search, and the VPI/VCI for the
Secondary search. The Search Engine Configuration Register (0x10B) settings
to achieve this are summarized below in Table 79. These field settings
correspond to a register value of 0x0031A000.

Table 79 - Example Search Engine Config. Reg. (0x10B)

Field Value Effect

Unused[4:0] 0 Set unused bits to 0.
Search_Fro
m_IBCIF

0 Not relevant to this example, so leave at default value.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 213

Field Value Effect

LPHY[2:0] 5 Length of PHY ID in the Primary Key is 5. In this
example it will not matter since all connections have
identical PHY IDs. The condition that LPHY + LA <= 17
is met.

LA[4:0] 12 Length of Field A in the Primary Key is of 12 bits. This is
chosen to match the length of the VPI field in the routing
word.

STARTA[6:0] 63 Field A is extracted from the Routing Word with its MSB
located at bit position 63, which is the MSB of the VPI.

LB[3:0] 8 Length of Field B in the Secondary Key is 8. This is
chosen so that the 8 LSBs of the VCI will be used.

STARTB[6:0
]

43 Field B is extracted from the Routing Word with its MSB
located at bit position 43, which is the 8th bit of the VCI.

Figure 58 below illustrates the search setup. The Secondary Search Table
entries are shown at each node. For simplicity, leading zeros are not included in
each field, and only Field B from the Secondary Search Key is shown. Since this
example uses the algorithm of searching from MSB to LSB in the Secondary
Search Keys, none of the bits below FieldB will be searched so they do not need
to be shown. These entries are arranged such that their vertical positions
correspond to which bit is used to make the branching decision.

The 3-bit SRAM addresses are shown for the search table entries and the VC
Table Records themselves. The SRAM addresses for the Secondary Search
Table entries can be assigned arbitrarily. The SRAM addresses for the VC Table
Records can also be assigned arbitrarily. In this case, they are assigned in
descending order with the VC#'s.

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 214

Figure 58 - Detailed Binary Search Tree Example

0
0
0
1
0
0
0
0

0
0
0
1
0
1
1
0

0
0
1
0
0
0
0
0

0
0
0
1
0
1
1
1

0
0
1
0
0
0
1
1

1
0
0
0
1
1
1
1

1
0
1
1
0
0
0
0

1
0
1
1
0
1
0
1

A

B C

D

E

F

G

VC# 8VC# 7VC# 6VC# 5VC# 4VC# 3VC# 2VC# 1

ROOT

LEAF
bit41
bit40
bit39
bit38
bit37
bit36
bit35
bit34

RightLeft

101001 000 0100 0

100111 100 1010 0

100100 110 0000 1

100010 010 0011 1100011 100 0111 1

100111 011 1010 1

100100 111 1101 1

000001010011100101110111

xxx = SRAM Address in
 Search Partition

001

010

101

110100

000

011

Primary Key

Primary Search Table

Secondary
Search Table

0
001

7

 . . .

 . . .

 . . .

 . . .

 . . .

 . . .

 . . .

 . . .

Secondary
Key

xxx = VC Record Address
 (SRAM Address in
 Linkage Partition)

Suppose a cell comes in corresponding to VC# 2 in Table 3 above. The search
will proceed as follows:

1. The Primary Search Key is extracted from the Routing Word:

= 0b00000 (PHY ID) + 0x005 (FieldA)

2. The Secondary Search Key is extracted from the Routing Word:

= 0b0000 (zero padding) + 0b1011000 (FieldB = 0xB0) + 0b000000
(PHYID) + 0x00500B0 (VPI/VCI).

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 215

3. The value of the Primary Key addresses the entry in the Primary Search
Table at location 0x0005. The Primary Search Entry points to the root node
(node A) of the Secondary Search Tree at address 001.

4. The root Secondary Search Table Entry (node A) at address is read. The
Selector field indicates that bit 0b101001, or bit 41, of the Secondary Search
Key should be examined.

5. Bit 41 is a one, indicating that the left branch should be taken. The left leaf
indicator is 0, meaning a leaf has not been found yet. Thus, the left branch
address, 000, is used to read the Secondary Search Table entry of the next
node, node B.

6. In Secondary Search Entry at node B, the Selector field is 0b100111 meaning
bit 39 of the Secondary Search Key should be examined.

7. Bit 39 is a one, indicating that the left branch should be taken. The left leaf
indicator is 0, meaning a leaf has not been found yet. Thus, the left branch
address, 011, is used to read the Secondary Search Table entry of the next
node, node D.

8. In the Secondary Search Entry at node D, the Selector field is 0b100100
meaning bit 36 should be used.

9. Bit 36 is a zero, indicating that the right branch should be taken. The right
leaf indicator is 1, meaning a leaf has been found and that the right branch
address contains a VC Record Address.

10. The VC Record Address can now be to read the VC Record for this
connection and confirm that its information matches the data in the initial
search keys. If a match is confirmed then the address is found that points to
the correct VC Table Record that corresponds to VC# 2!

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 216

NOTES

PRELIMINARY
PM7325 ATLAS-3200

PROGRAMMER'S GUIDE

PMC-2001159 ISSUE 1 ATLAS-3200 PROGRAMMER'S GUIDE

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or
suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability, performance, compatibility
with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly
disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and
implied warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits,
lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility
of such damage.

© 2000 PMC-Sierra, Inc.

PMC-2001159 (P1) ref PMC-2001159 (P1) Issue date: Dec 2000

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

CONTACTING PMC-SIERRA, INC.
PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000

Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Application Information: apps@pmc-sierra.com

(604) 415-4533
Web Site: http://www.pmc-sierra.com

mailto:document@pmc-sierra.com
mailto:info@pmc-sierra.com
mailto:apps@pmc-sierra.com
http://www.pmc-sierra.com/

